Fracturation électro-hydraulique des roches

Cnr

Gilles Pijaudier-Cabot

Université de Pau et des Pays de l'Adour Institut Universitaire de France

C. La Borderie, T. Reess, O. Maurel, W. Chen, A. Sylvestre de Ferron, F. Rey-Betbeder, A. Jacques

IUF

CFMR, Paris 16/10/2014

IVERSITÉ

Context

 Extract fossil ressources from tight rocks

Context

- Extract fossil ressources from tight rocks
- Alternative to hydraulic fracturing = dynamic loads
- Dynamic wave generated by electrical discharge

From fracture to fragmentation....

Pulsed Arc Electro-Hydraulic Discharge Fracturing

Experimental facility

Pulsed Arc Electro-Hydraulic Discharge Fracturing

Experimental facility

CFMR, Paris 16/10/2014

Coupling between damage and permeability

Dynamic load – Shock wave

Effect of a single shock wave

Confinement : eq. to 2200 m

Dynamic load – Shock wave

Multiple shocks

Confinement : equivalent to 2200 m

Dynamic load – Shock wave

Multiple shocks

Permeability 10⁻¹⁷ m

Permeability 10⁻¹⁶ m

Permeability 10⁻¹⁵ m

Confinement : equivalent to 2200 m

Computational model

- Generation of the shock wave
- Induced damage in the reservoir
- Growth of permeability due to damage

- Simulation of the experiments
- Model « reservoir » simulations

Generation of the shockwave in water

Electrical power injected P(t)

'est d'explosion en eau - Detente d'une bulle de gaz parfait EVLER

Pressure wave

CFMR, Paris 16/10/2014

IVERSITÉ DE PAU ET DES

Constitutive modelling

- Based on continuum damage mechanics \bullet
- Anisotropic damage
- Crack closure effect
- Rate dependent response

Desmorat et al. 2007

5

-15

-20

-25

30

CFMR, Paris 16/10/2014

Rate dependent formulation

Classical rate dependent formulation

$$\dot{D}_i = \dot{\lambda} \frac{\langle \varepsilon_i \rangle}{\varepsilon_I}$$
 $\dot{\lambda} = \frac{1}{m} \langle \frac{f}{k_0} \rangle^n$

Evolution of permeability

Permeability is indexed on damage growth

$$K = K_0 10^{8,67D-0,3} \qquad D \ge 0,035$$
$$K = K_0 \qquad D \le 0,035$$

Computational model

Different confinement levels

Surface level : P_{ax}=2MPa, P_{rad} =2MPa

Medium confinement : P_{ax}=19.5MPa, P_{rad} =9.1MPa

High confinement : P_{ax} =40MPa, P_{rad} =25MPa

CFMR, Paris 16/10/2014

Evolution of damage / Evolution of permeability

Medium confinement (1500 m), vertical stress = 19.5 Mpa, confinement stress = 9.1 MPa

Evolution of damage / Evolution of permeability

Evolution of damage / Evolution of permeability

Repeated shocks

Simulation on a representative problem

IVERSITÉ

DE PAU ET DES PAYS DE L'ADOUR

Simulation on a representative problem

Damaged depth with time

Damaged elements

CFMR, Paris 16/10/2014

Concluding remarks

Design and experiment a potential alternative methodology to hydraulic fracturing:

Modelling the anisotropic evolution of permeability

Comparisons with experiments

Evaluation on representative geometries

Aknowledgments

Readings

Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar, O. MAUREL, T. REES, M. MATALLAH, A. De FERRON, W. CHEN, C. LABORDERIE, G. PIJAUDIER-CABOT, A. JACQUES, F. REY-BETHBEDER, Cement and Concrete Research, Vol. 40, pp. 1631-1638, 2010.

Modelling anisotropic damage and permeability of mortar under dynamic loads, W. CHEN, O. MAUREL, T. REESS, M. MATALLAH, A. de FERRON, C. LABORDERIE, G. PIJAUDIER-CABOT, Eur. J. Env. Civil Engrg. Vol. 15, 727-742, 2011.

Experimental study on an alternative oil stimulation technique for tight gas reservoirs based on dynamic shock waves generated by Pulsed Arc Electrohydraulic Discharges, W. CHEN, O., MAUREL, T. REESS, A. SYLVESTRE de FERRON, C. La BORDERIE, G. PIJAUDIER-CABOT, F. REY-BETBEDER, A. JACQUES, J. Petroleum Engrg., Vol. 88-89, pp. 67-74, 2012. Simulation of damage - permeability coupling for mortar under dynamic loads, W. CHEN, C. La BORDERIE, O., MAUREL, G. PIJAUDIER-CABOT, F. REY-BETBEDER, O., MAUREL, G. PIJAUDIER-CABOT, F. REY-BETBEDER, Int. Num. Anal. Meth. Geomechanics, Vol. 38, pp. 457-474, 2014.

Experimental and numerical study of shock wave propagation in water generated by pulsed arc electrohydraulic discharges, W. CHEN, O. MAUREL, C. LA BORDERIE, T. REESS, A. De FERRON, M. MATALLAH, G. PIJAUDIER-CABOT, A. JACQUES, F. REY-BETHBEDER, Heat and Mass Transfer, 50 (5), 673-684, 2014.