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Preface

My intent in writing this book is to present an introduction to the thermome-
chanical theory required to conduct research and pursue applications of shock
physics in solid materials. Emphasis is on the range of moderate compression
that can be produced by high-velocity impact or detonation of chemical explo-
sives and in which elastoplastic responses are observed and simple equations of
state are applicable. In the interest of simplicity, the presentation is restricted to
plane waves producing uniaxial deformation. Although applications often in-
volve complex multidimensional deformation fields it is necessary to begin with
the simpler case. This is also the most important case because it is the usual
setting of experimental research. The presentation is also restricted to theories of
material response that are simple enough to permit illustrative problems to be
solved with minimal recourse to numerical analysis.

The discussions are set in the context of established continuum-mechanical
principles. I have endeavored to define the quantities encountered with some
care and to provide equations in several convenient forms and in a way that
lends itself to easy reference. Thermodynamic analysis plays an important role
in continuum mechanics, and I have included a presentation of aspects of this
subject that are particularly relevant to shock physics. The notation adopted is
that conventional in expositions of modern continuum mechanics, insofar as
possible, and variables are explained as they are encountered. Those experienced
in shock physics may find some of the notation unconventional. This is unfortu-
nate, but I have found its use necessary to ensure that statements made are
precise and unambiguous. I hope that the effort required to accommodate to
these changes will be rewarded by the benefits that accrue.

Shock phenomena encountered in applications are analyzed using compre-
hensive programs that are executed on powerful computers. In fact, the need to
solve nonlinear wave-propagation problems has been a principal motivation for
development of the most powerful computers of their time—the super-
computers. Solution of geometrically complex three-dimensional problems in
which large deformations occur and in which the material description captures
effects such as elastic—viscoplastic flow, phase transformations, fracture,
chemical reaction, etc., has become routine. These powerful tools are highly
effective, but it is necessary to have a sound understanding of the physical
phenomena and wave interactions being simulated if the tools are to be used
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with confidence. An objective of this volume is to assist the reader in developing
this understanding,

Following some introductory comments, we have Chap. 2 in which the
kinematical and dynamical principles and equations that form the basis of our
subject are discussed. The equations are presented in both Lagrangian (material)
and Eulerian (spatial) form and are arranged in a way that lends itself to ready
reference. There has been an effort made throughout the volume to provide
equations for calculating all of the thermomechanical field quantities encoun-
tered in investigations of shock phenomena. In Chap. 3 the equations that have
been developed are applied to analysis of the propagation and interaction of
plane longitudinal shocks. This chapter establishes the langnage of the subject
and provides the basis for solving elementary problems, including the design of
experiments. This is the essential background for following the remainder of the
volume, but a cursory reading should suffice for those who have some familiar-
ity with the field.

Chapter 4 is the first of several addressing development of constitutive
equations that describe the thermomechanical response of some important
classes of materials. In this chapter, the issues are invariance to the choice of
coordinates used and thermodynamic requirements imposed on theories of
material response to ensure that deformation cannot cause a decrease in entropy.

Practical thermodynamic topics arising in connection with inviscid fluids are
addressed in Chap. 5. We point out that solids subjected to high pressure behave
much like fluids and that many problems of shock compression of solids are
actually analyzed as though the material were a fluid. Topics covered include
the ideal gas and Mie—Griineisen equations of state, and the relationships among
isotherms, isentropes, and Hugoniot curves. This material is extended to elastic
solids in Chap. 6.

In Chap. 7 we consider the response of elastic—plastic and elastic—
viscoplastic solids, beginning with a theory of small deformation and proceeding
to finite elastic—plastic deformation and then to finite deformation of elastic—
viscoplastic solids. In developing the finite-deformation theories we have taken
the opportunity to introduce dislocation mechanics as an example of the inter-
play of atomistic and continuum concepts that has been important in the de-
velopment of shock physics throughout much of its history. The resulting
theory, although unconventional, is useful and its development instructive.

In Chaps. 8 and 9 we continue the study of wave propagation begun in Chap.
3. We begin with weak elastic waves described by linear equations and proceed
to the nonlinear waves that are more typical of shock problems. In Chap. 10 we
consider elastic-plastic waves, beginning with detailed consideration of those
involving small deformation and proceeding on to those that are stronger and
involve viscoplastic effects.
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Chapter 11 contains a discussion of three theories of porous materials and
the waves that propagate in them. In Chap. 12 we address fractures that can
result from the tension that arises when decompression waves collide. Finally,
steady detonation waves are discussed in Chap. 13.

Many of the chapters include exercises that address details of the develop-
ments presented or extend the discussion. Detailed solutions of the problems
presented in the exercises are included in an appendix.

Acknowledgments. I first became interested in nonlinear wave propagation as
a graduate student at the California Institute of Technology. This was followed
by many years at the Sandia National Laboratorics, mostly in research groups
concerned with shock physics. During that time T had the pleasure and benefit of
association with colleagues too numerous to name, working in most aspects of
the field. Many of these people were experimentalists or specialists in the com-
putational aspects of the subject. Some were theoreticians and some pursued
applications. All were interested in the subject as a whole and interactions
among them led to significant advancement of the science and technology. The
community of people interested in shock compression of solids and related
matters is large enough to provide a broad perspective but small enough that one
can know many of its members. In recent years I have been involved with the
Springer series on High-Pressure Shock Compression of Condensed Matter and
have benefited greatly from discussions with authors contributing books and
articles to the series. They come from laboratories situated throughout the world.

I particularly acknowledge my long association with Robert A. Graham, who
was the founding editor of the series in which this book appears and with
Yasuyuki Horie, a current editor and supporter of the effort that resulted in the
preparation of this book. Most of all, T acknowledge the support and encour-
agement of my wife, Helen.

Tijeras, New Mexico Lee Davison
September, 2007
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CHAPTER 1

Introduction

Nonlinear wave propagation has been a subject of serious scientific investigation
since the 1800s, but the early work was concerned mostly with gases and was
almost entirely theoretical. Experimental investigations of shock compression of
condensed matter have been reported since the early 1900s and military applica-
tions motivated a marked increase in interest in the subject during the 1940s and
1950s. Since this early period the field has grown in both depth and breadth and
work is now being reported by hundreds of investigators working in countries
scattered throughout the world.

Modern scientific work on shock compression of solids began in the United
States and in the Soviet Union. This early work has been reviewed by Al’tshuler
[2] and by Rice et al. [86]. Classic accounts of the subject appear in books by
Courant and Friedrichs [28] and by Zel’dovich and Raizer [109]. Presentations
complementary to the present book have recently been prepared by Asay and
Shahinpoor (eds.) [7], Drumheller [39], Graham [50], and Kanel et al. [63].

Investigations of nonlinear wave propagation in solids have as their objective
the development of methods for predicting effects of dynamic events such as
high-velocity impacts and detonation of explosives. Shock-compression experi-
ments provide access to the highest pressures attainable in a laboratory envi-
ronment and lead to deformation of materials at the highest possible rate. In
some cases the objective of shock-compression experiments is to establish the
basis for, or to validate, theories of material response with which one can predict
wave propagation and interaction phenomena. In other cases, interest lies less
with wave propagation than with the effects the waves produce in the materials
in which they are propagating. These effects include chemical and metallurgical
changes, polymorphic phase transformations, fracture and fragmentation, etc.
Experiments that can be conducted in a laboratory support development of
equations of state for stresses from the acoustic range to several hundred GPa*
and temperatures from a few Kelvin to tens of thousands of Kelvin. Experiments
particularly concerned with effects of the rate at which the material is deformed
cover the range of strain rates from about 10> to at least 10° s'. They provide
information on mechanisms of inelastic deformation of both brittle and ductile

* 1 GPa=10°Pa=10°N/m?
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materials, rates at which chemical reactions and phase transformations proceed,
etc.

A wide variety of solid materials has been investigated in shock-wave ex-
periments; they include most elemental metals and many metallic alloys, inor-
ganic compounds including ceramics, rocks, and minerals, soils, polymers, fiber-
reinforced and laminated composites, porous solids, and explosives.

Work conducted in the lower range of stress and temperature addresses high-
rate deformation processes, matters in the domain of solid-state physics, metal-
Turgical effects, solid-state chemical reactions, electromechanical phenomena,
and explosive detonation. Most material behaviors have been, or can be, subjects
of shock-compression investigations. Weak shocks, those associated with
stresses of a few GPa, elicit electrical responses in dielectric, piezoelectric, and
ferroelectric materials. Shocks of this strength produce inelastic flow and asso-
ciated changes in the microstructure of metals and interaction of these shocks
can produce tensile stresses leading to nucleation and growth of microvoids and
cracks followed by complete fracture of samples of the material. As one consid-
ers stronger shocks, the stress is dominated by the pressure and interest turns to
determination of the equation of state of the material. Work conducted at the
high extremes of pressure and temperature is directed toward determination of
the equation of state of dense plasmas.

Shock physics, as is the case with most scientific endeavors, involves
experimental observation and measurement, development of theoretical descrip-
tions of these observations, and computational work to validate the theories and
apply them to the solution of practical problems. A contemporary view holds
that a physical phenomenon is understood if there exists a theory that allows it to
be simulated numerically.

A shock, in the sense used here, is a propagating discontinuity of density,
temperature, stress, etc. that exists in a material continuum. Not all propagating
disturbances are, or evolve into, shocks. Waves that produce a decrease in mass
density of the material usually spread as they propagate and are not shocks.
Smooth compressive disturbances, on the other hand, usually become steeper as
they propagate and evolve into shocks. The shock is a continuum concept, but
discussion of shocks inevitably involves consideration of the behavior of matter
at the atomic or molecular level, and sometimes at the scale of grains of a
polycrystal or other mesoscopic features of the material. Both common intuition
and experimental observation indicates that a propagating shock cannot be a
strict mathematical discontinuity but must have some spatial extent. Examina-
tion of materials recovered after having been subjected to shock compression
reveal substantial alteration of the material microstructure, indicating that the
shock transition cannot be instantancous and also that the shock-compression
process is highly irregular when viewed at microscopic or mesoscopic scales,
(i.e. on length scales comparable to the lattice spacing or the size of grains of
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polycrystalline materials). It is found, however, that the fields associated with a
steadily propagating smooth wave satisfy the same conditions of mass, momen-
tum, and energy conservation as are satisfied at a strict discontinuvity. This
means that it is reasonable to interpret a steady, structured wave as a shock
discontinuity if its thickness is small compared to other dimensions of interest.
In its idealized form the shock deforms the material instantaneously. A struc-
tured shock deforms the material at a finite rate, but one that is the maximum
that can be achieved in a steady waveform. In the experimental context, it is
these steady waves, whether considered to be discontinuities or smooth distur-
bances, that can be interpreted with the greatest confidence.

Shock-compression phenomena, particularly for weak shocks, are greatly
affected by microstructural features of the material in which they propagate.
Inelastic deformation of metals results from motion of dislocations and forma-
tion of twins and other defects of the crystal structure, adiabatic shear bands, etc.
Often theories of material response are motivated by knowledge of the operation
of these deformation mechanisms, and these theories have been quite successful
in predicting continuum response.

Although our presentation represents a rather idealized, mathematical, view
of shock waves, much of the content of the field of shock physics concerns
experimental observations and addresses metallurgical, chemical, and other
effects of impacts, explosions, and similar brief, high-pressure events in a way
that focuses on the effects these stimuli produce in materials rather than on the
shock itself. Nevertheless, the emphasis of this book is on shock-wave propaga-
tion and interaction and, as a consequence, is concerned more with thermo-
mechanical phenomena than with matters in the realm of materials science.

Knowledge of the subject matter of this book is widely applied to the design
of munitions, both conventional and nuclear, and to assessment of the effects of
these munitions. This latter work includes design of armor to mitigate the
intended effect of the munitions. Shock physics is also important for its utility in
determining the high-pressure equations of state needed to study the structure of
the Earth and planets and because it permits analysis of effects of events such as
high-velocity collisions of asteroids with planets. Shock processes have played a
significant role in the evolution of the solar system, and analysis of chemical and
physical effects of shocks on natural materials has proven important in studying
this evolution. Knowledge of the equation of state of planetary materials is often
obtained from shock-compression experiments and is essential for understanding
the structure of these bodies. Considerable effort has been devoted to develop-
ment of methods by which shock-compression can be used to produce dense,
strongly bonded compacts of powdered metals and inorganic compounds such as
oxides and nitrides. Shock treatment to increase the defect density in powdered
materials makes it easier to sinter them into strong compacts. Shock-induced
chemical reactions have yielded a variety of novel compounds. Diamond abra-
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sives can be made by shock compression of graphite. Useful bimetallic plates
can be made by explosively cladding a strong and inexpensive structural metal
with a layer of material resistant to corrosion such as may occur in chemical-
processing vessels. Material for making laminated coins is also prepared by this
method. The surface of structural parts made of some metals can be effectively
hardened by detonating a sheet of explosive in contact with the part. In most
cases, shock processing is expensive, which means that the product sought must
be one of unusually high value if the process is to be commercially useful.

This volume, a textbook rather than a treatise, contains very few references.
There are, however, many works in which extensive lists of references have
been compiled. Numerous references to work conducted prior to 1979 have been
cited by Davison and Graham {32] and a concise listing of important early mile-
stones is included in the preface to Reference [7]. Graham [50] cites many
review articles and papers, particularly in the areas of shock induced electrical,
magnetic, and chemical phenomena. Asay and Shahinpoor have presented a sub-
stantial bibliography on shock compression of solids in Reference [7, App. A}.
Russian work is reviewed in References [10,44,83], with many citations pro-
vided. The American Physical Society Topical Group on Shock Compression of
Condensed Matter has held conferences on this subject in alternate years begin-
ning in 1979 and the proceedings of these conferences provide a rich source of
information on contemporary research.

It is important to mention that many topics that fail under the heading of
shock compression of solids are not discussed in this book:

¢ Experimental methods of shock physics have been presented in consider-
able detail by Antoun, et al. {4], Barker et al. [9], Chhabildas and Graham
[21], Graham and Asay [52], McQueen et al. [77], and by Zhernokletov and
Glushak {110].

¢ A very important aspect of shock physics is the use of computers to simu-
late impacts, explosions and other stimuli that produce shock waves and the
effect that they have on material bodies. A brief account of the early history
of this work has been prepared by Johnson and Anderson [61]. Benson [12]
and McGlaun and Yarrington [76] and have discussed the capabilities and
methodology of the software used for these simulations and have provided
extensive lists of references.

¢ An important thermomechanical response to shock compression is poly-
morphic phase transformation. The lattice structure of many materials
changes to a denser packing when sufficient pressure is applied. Work in
this area has been reviewed by Ahrens [1], Duvall and Graham [40],
Funtikov and Pavlovsky [45], Kanel et al. [63], and McQueen et al. [77].

¢ Nunziato et al. [85] have discussed responses of viscoelastic solids.



1. Introduction 5

+ Electrical, magnetic, and optical responses of materials to shock compres-
sion have been reviewed by Graham [50].

¢ Heterogeneous materials have been discussed by Baer [8], Davison et al.
(eds) [33], and Nesterenko [83].

+ Information on metallurgical aspects of shock compression can be found in
publications of Gray [53], Johnson [59], Meyers [80], Meyers and Aimone
{81], and Zurek and Meyers [111]. The mechanical response of ceramic
materials differs considerably from that of ductile materials such as metals
and has been discussed by Cagnoux and Tranchet [17] and by Mashimo
[75]. Shock-induced chemical reaction and material synthesis has been
discussed by Batsanov [10], Graham [50], Kondo [66], Nesterenko [83],
Sekine [88], and Thadhani and Aizawa [95].



CHAPTER 2

Mechanical Principles

In this chapter we discuss kinematical descriptions of motion, mathematical
representation of internal force systems, and principles of balance of mass,
momentum, and energy in general forms that that apply to all continuous
materials. Several subsequent chapters are devoted to discussion of the consti-
tutive relations that are used to express the distinguishing characteristics of
specific materials.

A few of the basic concepts of continuum mechanics must be set forth be-
fore we turn our attention to matters specific to shock waves. Continuum
mechanics is a rich and highly developed field of classical physics and mathe-
matics. It has a long history in which concern for wave-propagation problems
has played a significant role. The introduction given in this chapter is presented
to establish the notation and provide a ready reference to the equations that we
shall be using. Several texts and treatises on the subject are listed among the
references and the reader is encouraged to refer to them for a more comprehen-
sive presentation [72,98,102,103].

2.1 Notation

The mathematical notation adopted in this book is that in common use in
contemporary expositions of continuum mechanics. Field variables are tensors,
with most equations being written in indicial notation for maximum clarity.
The summation convention applies to repeated indices. Commas denote differ-
entiation with respect to the coordinate indicated, a superimposed T denotes
tensor transpose, and a superimposed —1 denotes a tensor inverse. When
indicial notation is not used, vectors and second-order tensors are set in bold-
face type. For the most part, upper-case Latin letters are used to denote quanti-
ties related to the Lagrangian (reference) configuration of the material body and
lower-case Latin letters denote quantities related to the Eulerian (current or
spatial) configuration of the body.
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2.2 Material Bodies, Configurations, and Motions

The setting for continuum mechanics is an aggregation of matter called a
material body (or simply a body) occupying a region of three dimensional
Euclidean space. A place x in this space is identified by its coordinates x;,
i=1,2,and 3, in a Cartesian inertial frame, x.

The essence of a deformable body is that the relative positions of material
particles comprising it can be altered by applied forces. Any of the possible
manifestations of the body is called a configuration, which is simply an ar-
rangement of its particles in the space (sce Fig. 2.1). To describe these ar-
rangements it is necessary to identify each material (continuum) particle of the
body in a unique way. This is accomplished by selecting a convenient reference
configuration. When the body is in this reference configuration, each of its
particles occupies a place, X, having coordinates X;, /=1,2,and 3, in a
Cartesian reference frame, X. The reference coordinate associated with a
particle remains unchanged as the current configuration of the body is altered.
It is often convenient to select the reference configuration to be the initial
configuration of the body.

xi =%(X,0)

X

Initial
configuration

Current
configuration

Figure 2.1. Reference and current configurations of a body

A deformation of the body is a continuous mapping of its reference configu-
ration to a configuration in the spatial frame. A motion of the body is a con-
tinuous time-dependent sequence of configurations, and is described by func-
tions of the form

xi=%(X, 1) 2.1
that give the location of each particle of the body at any time, ¢. It is a basic
principle of continuum mechanics that a deformation cannot place two material

particles in the same position at the same time, which means that Eq. 2.1 can
be inverted to give equivalent expressions of the form

Xr=X1(x,0). (2.2)
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We shall assume, for the present, that the functions X and X are as smooth as
necessary for the developments undertaken. The focus of this book is shock
propagation, however, and we shall have to allow the smoothness assumption
to be violated on isolated surfaces to accommodate motions involving shocks.

Equation 2.1 is said to form the material description of the motion; it (and
other functions of X) focuses attention on what happens to a given material
particle. Equation 2.2, which forms the spatial description, focuses attention on
what happens at a given place x in the spatial frame. We shall often follow the
traditional practice of referring to the spatial description as Fulerian and the
material description as Lagrangian. Although the two descriptions are equiva-
lent, it often proves convenient to solve problems of fluid mechanics in the
spatial description and problems of solid mechanics in the material description.
A measurement made, for example, by attaching a thermometer or pressure
transducer to the wall of a wind tunnel records Eulerian information—a history
of some variable recorded as the material flows past a specific place. A meas-
urement made by attaching an instrument to a material sample, as when a
thermocouple or strain gauge is cemented to a solid body, provides Lagrangian
information—a history of the variable at a specific material particle.

Several important kinematical quantities are derived from the motion 2.1.
In differential form this equation becomes

dxi=Fi;dXs, 2.3)
where the two-point tensor having components

854X, B
Fij=——"2+ 2.4
T 2.4

is called the deformation gradient. Equation 2.3 shows how a line element dX
in the reference configuration is rotated and/or stretched to its spatial image
dx in the course of the motion. The inverse deformation gradient, F ™', is
obtainable by inverting Eq. 2.4 or by differentiation of Eq. 2.2:

20X (%0 @.5)
ax,-
In view of the invertiblity of the motion, we have 0 <J <o, where
J =detF (2.6)

is the Jacobian of the transformation 2.1. In fact, J is the ratio of the volumes
that a fixed material element occupies in the spatial and reference configura-
tions:

dv=JdV, @7
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where dV is the volume of a material element in the reference configuration
and dv is the volume of this same portion of the material in the spatial configu-
ration.

By a direct, but tedious, calculation one can show that

The polar decomposition theorem provides two ways of separating the de-
formation gradient into parts that can be identified with the stretch and the
rotation to which a material element has been subjected:

Fi=Riy Uy =Vij Ry, 2.9

where U and V are symmetric and positive-definite and R is orthogonal. In
these relations the rotation tensor, R, the right stretch tensor, U, and the left
stretch tensor, V, are uniquely determined. The expression RU can be inter-
preted as a decomposition of F into a stretch followed by a rotation, whereas the
expression VR corresponds to a process of rotation followed by stretch.

When considering material responses, we shall encounter the right and left
Cauchy—Green tensors

Cur = Fir Fig (2.10)

and
-1 -1

cij=Fri Fy;, 2.11)
respectively.

In the absence of deformation, F is the identity tensor so C and ¢ also have
this property. It will prove useful to define the Lagrangian strain tensor

Ey = '%‘(C]J -3y ) 2.12)
and the Eulerian strain tensor
eij= %(Sij-Cij) , 2.13)

where ;=1 for i=; and O otherwise. These strain tensors vanish in the
absence of deformation.

Time derivatives of the various field quantities are required for analysis of
most mechanical processes. In some cases, interest lies with the change in time
of a variable associated with a particular point in space (¢.g. the reading on a
thermometer in your home). In other cases, interest lies with change of a
variable evaluated at a particular material particle (e.g. the reading on a thermo-
meter attached to a weather balloon entrained in the wind). The partial time
derivative of a function at fixed X is particularly important for describing the
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behavior of materials and is called a material derivative. As a general
convention, a material derivative is denoted by a dot over the relevant variable:

)

= (2.14)

The material derivative can also be calculated for a variable expressed in the
spatial description if the motion is known. Consider a function = (x,£). We
have

¢ = oC(x(X, 1,1 _0C(x,1) + oC(x, 1) ax(X,1) _ 0G(x,1) 4 0C(x, 1)
- ot T ot dx; ot ot ax;

xi . (2.15)

The velocity of the material particle X is the rate of change of its position in
space, so the components of the particle velocity vector are
%= oxi(X, 1) .
ot

The particle acceleration is simply the material derivative of the particle
velocity:

(2.16)

= oxi(X, 1) _ oxi(x, 1) "y 0% (x, 1) .

i 2.17
ot ot 6xj ( )

The spatial velocity gradient tensor,
. -1
lij=xi,j=Fi Fij , (2.18)

plays a role in the theories we shall be using. Most often it appears in terms of
either the strefching, its symmetric part,

dijE%(liff-lji), (219)
or the spin, its antisymmetric part,
wy=2(li=li), (2.20)
so that
lij = d;’j + Wy (2.21)

The material derivative of J can be shown to satisfy the equations
J =(detF) = (detF) tr(FF) = (det F) trl = J ¥, . (2.22)

Although somewhat out of place in a section otherwise devoted to kinemati-
cal matters, it is useful to note that each element dV of matter is assigned a
property called mass. The ratio of this mass to the volume of the element is the
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mass density, pg , the mass per unit volume of material in the reference con-
figuration. We designate by p the mass density of this same material element
in the current configuration. The reciprocals of these quantities, the specific
volume in the reference and current configurations, respectively, are designated
vg and v; vr =1/pg and v =1/p . Equations 2.7 and 2.22 can be written in
the forms

J= -ppi = 2.23)
and
% = —% =X =—dii . (2.24)
The Lagrangian compression
A=YRV_P7PR 4 (2.25)

VR p

occurs frequently in the shock-wave literature.

Uniaxial Deformation and Motion. This book is concerned with the propa-
gation of plane longitudinal waves, for which the motion is uniaxial* and can
be expressed in the especially simple form

x=X+UX,1), x2=X2, x3=X3. (2.26)

In describing this motion, we have chosen coincident reference and spatial
coordinates oriented so that the displacement is along the 1 axes and we have
written x=x; and X =X; for simplicity. We shall continue to do this
throughout this book, using the subscripts only occasionally for clarity. It is
apparent from the form of the equation that a material particle X is displaced
from its reference position by an amount U in the positive x direction. There is
no lateral displacement of any particle. The spatial description of the uniaxial
motion equivalent to that described by Eq. 2.26 has the form

X=x-u{x1t), Xa=x2, X3=x3. 2.27)

* The term “uniaxial” is also used in discussing the extension of slender rods. That
situation differs from the one considered here in that the term refers to a uniaxial stress
field—it is the transverse stress that vanishes, not the transverse displacement.
Transverse deformation of a slender rod occurs in the amount required to produce a
state of vanishing transverse stress components. We shall conform to the usual practice
of the shock-physics community in calling the motions of Egs. 2.26 and 2.27 uniaxial
motions or uniaxial strains.
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When attention is restricted to motions in this class, only the coordinate in
the direction normal to the plane of the wave enters the equations of the theory.
The state and properties of the material points, and the imposed boundary and
initial conditions, can vary with this coordinate, but are independent of the
lateral position. Although the body is a three-dimensional object, all material
particles in a given plane normal to the coordinate are constituted the same,
experience the same conditions, and exhibit the same responses.

Uniaxial motions appear most naturally in material bodies that occupy the
entire space, half of the space, or a plate of infinite lateral extent but finite
thickness. The reason that this unrealizable setting is of practical importance is
that the waves of interest propagate at a finite speed. This ensures that there is
a known, finite time interval during which phenomena occurring near the
1 axes are completely independent of any effect of lateral boundaries located at
some distance from these axes.

In the case of the uniaxial deformation of Eq. 2.26, the components of the
deformation gradient are

+ oUu(X,n

=1 , Fu=Fu=1, and Fiy=0, for izJ, (2.28)

the rotation tensor vanishes, and the components of the particle velocity vector
are

420U

vy = x3=0. 2.29
y X2=X3 (2.29)

Evaluation of Eq. 2.18 gives the only nonvanishing component of the velocity
gradient tensor as

Fn
h=—, 2.30
o (2.30)
so n=dn and w=0.

The volume change experienced during the uniaxial motion as given by
Eq. 2.7, is

dv=mdV =(1+Ux)dV, (2.31)

where we have introduced the notation Ux =4U(X,f)/0X . For uniaxial
motion Egs. 2.23 and 2.24 take the forms

J=Fn=1+Ux =VVE (2.32)

and
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= . (2.33)
P v Fn 1+Ux

In the special case of uniaxial deformation we have A=1-Fin=-Ux .

From Egs. 2.3 and 2.28 we sce that a line element lying along the X axis in
the reference configuration lies along the x axis in the spatial configuration, but
increases in length by the factor Fi, (i.e., dx =F11dX ) in the course of the
motion. The length of line elements oriented perpendicular to the X axis is
unaltered by the motion (i.e., dx2 =dX2,and dx; =dX3). Line elements lying
along the coordinate directions maintain their orthogonality in the course of the
motion, so we call these directions principal axes of the deformation. A line
element not perpendicular to the 1 axes is both stretched and rotated. Consider
the body shown in Fig. 2.2. Using Eq. 2.3, we find that the line elements
initially lying at +45° rotate in opposite directions so that the 90° angle be-
tween them changes to 90°—vy (where y >0 when the thickness is increased),
from which we obtain

y =2arctan[ (Fn -1)/(Fu +1)]. (2.34)

The change in a right angle is conventionally taken as a measure of shear, so
we see that the uniaxial stretching produces shear on planes making an angle
with the 1 axis.

N ~—"""17 NS

Xg xg
dX =(1,1,0dX /< dx = (F,1, 0)dx

|

9p°——> 9° -y —~

Xl /\/J ’
L N L

Figure 2.2. Line elements in a body subject to uniaxial deformation along the 1 axes.
The angle y is defined as positive when the plate thickness is increased, i.e., when the
material is in tension.

Usually, shear is discussed using a drawing such as that shown in Fig. 2.3a,
but it is easy to see that a similar figure arises when the uniaxial deformation is
viewed as shown in Fig. 2.3b. Note that the uniaxial deformation involves a
change of volume of the material in addition to shear, whereas the simple shear
of Fig. 2.3a occurs at fixed volume. Since solids are just those materials that
resist shear, the fact that shear occurs when waves of uniaxial deformation
propagate through a body makes the study of solids in this context different
from, and richer than, the corresponding study of inviscid fluids.
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Figure 2.3. A body subject to (a) simple shear and (b) uniaxial compression. Since
shear strain is measured in terms of the change in a right angle, it is easy to see that
shear is produced in the uniaxial deformation.

Spatial expressions (i.e., expressions in terms of u(x,?)) for the particle
velocity and deformation gradient that are equivalent to those already given in
material form are readily obtained by differentiating Eq. 2.27. Holding X and
then ¢ fixed, we have

1

Fiy=
11 1-u,

(2.35)

and

x=2 (2.36)
1-u,

for the nontrivial components of the deformation gradient and particle velocity.
In writing these expressions, we have used the shorthand notation

x=6u(x, t)’ ut:@u(x, t). @37
Ox ot
Solving Eqs. 2.35 and 2.36 for the derivatives of u(x, ¢), gives
u=> and u=071 (2.38)
Fn _ Fn

Finally, equating the material and spatial expressions for x and F11 gives the
relations



16  Fundamentals of Shock Wave Propagation in Solids

ux=£—, ut:...ﬁ_j‘_._ (2.39)
1+Ux 1+Ux
and
Uy =22 Uy=—H_, (2.40)
1-ux 1-ux

where we have introduced the additional shorthan_d notation

Up 2OULD aU(a)t(, n

= (2.41)

The particle acceleration, the material derivative of the particle velocity, is
given by

= OHXD 2.42)
Ot
and the spatial expression for this quantity is
P Ox(x(X, 0,0 _ ox(x,t) 306 1) ox(x, 1) ‘ 2.43)
ot ot Ox

For convenience, we record the following results of evaluating the strains,
velocity gradients, etc., for the case of longitudinal motion:

Cn=(F11)2=(1+Ux)?, Cn=Cs=1, Cy=0forI=J (2.449)

bu=Fu)=(-ux)"2?, bn=bxu=1, b;=0, izj (2.45)
En =1[(F)*-11=Ux +1(Ux)?, other Ey =0 (2.46)
en=21[1-(Fn)?]=u. - 1(u:)?, othere; =0 (2.47)
f=uF) =U, (2.48)
Fin=vir=1+Ux, Fxn =F3 =1, otherFiy=0 2.49)
A=1-Fn=-Ux =1-(v/vr) (2.50)
Fu_ Uxt  (I—sx)us + e ut
h=—= = , other /;;=0, 2.51
"TFN T 1+ Ux (I-ux)? ’ 231

and, because 1 is symmetrical for uniaxial motions, d =1, and w=0.
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2.3 Force and Stress

The internal force system at a point in a material body is characterized by the
Cauchy stress tensor, t(x,t) having components #;. Satisfaction of the
principle of balance of moment of momentum requires that this stress tensor be
symmetric (sce, for example, [72]):

tij=ti. (2.52)

The force per unit area, t™(x,f), on a plane in the current configuration
passing through the point x and characterized by the unit normal vector n, has
the components

£0(x, ) = nj Li(x, ) (2.53)

(see Fig. 2.4). From this equation, we see that the components of the stress
tensor correspond to normal and tangential forces on the faces of a unit cube
aligned with the spatial coordinate frame (see Fig. 2.5). As shown in the figure,
the diagonal components of the tensor correspond to normal forces on the
coordinate planes and the off-diagonal components correspond to transverse
(shear) forces on these planes. It is always possible to find a coordinate system
(called a principal coordinate system) in which the off-diagonal components
vanish. The components of the stress tensor expressed in this coordinate frame
are called principal stresses.

X1

Figure 2.4. Stress vector at a point on a surface, along with its normal and tangential
components
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Figure 2.5. Forces associated with components of the Cauchy stress tensor

It is useful to note that Eq. 2.53, which gives the stress applied on a plane
having unit normal n, can be decomposed into components normal and tan-
gential to this plane. For the normal component, we have (see Fig. 2.4)

" =t™nin =tymn;n;, (2.54)
and, for the tangential component (the maximum shear stress on the plane),
0 =6 — " = teing —tg menjn; (2.55)

The trace of the stress tensor is invariant to changes in the coordinate frame
and the scalar quantity

p=—1ti, (2.56)
the (negative) average of the principal stresses, is called the pressure.*
The tensor t', having components #; defined by the equation
1= by~ te 8ij = tij+ p By (2.57)

obtained by subtracting the average stress from the Cauchy stress tensor is
called the stress-deviator tensor, and is a measure of the shear stress present in
the body. Writing the foregoing equation in the form

* More precisely, the mechanical pressure. When dissipative effects such as viscosity
contribute to the siress, the mechanical pressure differs from the thermodynamic
pressure discussed in Chap. 5.
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tij=tij— p&ij (2.58)
expresses the stress as the sum of a pressure and a shear term.

Let us suppose that a body in a state of uniaxial deformation is of such
symmetry that the stress tensor is of the form

t 0
|ts]=0 = OF, (2.59)
0 0 tn

the case in which the transverse stresses associated with the constraint that
there is no lateral deformation are the same on all planes parallel to the x;
axis. Let us consider a plane inclined so that its normal makes the angle ¢ with
the x; axis. By symmetry, all such planes are equivalent, so we may take the
one having the normal n = (cos, sing, 0) . From Eqgs. 2.53-2.56 we find that

t™ =(tucosq, txnsing, 0)
t™ = (t11cos® @+ t225in’ @) (cos p, sing, 0)
(2.60)
t®™ = (t11 - t22) cos ¢ sing (sing, —cos @, 0)
p=- %(tn +212)

for this case. The coefficient f11—¢22 in the third of these equations, which is a
difference of principal stresses, is characteristic of shear stress. It can be shown
that the magnitude of the shear stress is maximized on the planes for which
¢ =1 /4. The magnitude of the shear stress on these planes is

Tmax = 3|t —t22] . (2.61)

The maximum shear stress is realized on planes lying at 45° to the x axis, so we
often use the variable

T450 = %(tn —t1), (2.62)

which is positive in tension and negative in compression. Combining this result
with Eq. 2.60,, we obtain the equation

—ti = p—$use, (2.63)

which shows that the longitudinal stress component includes both pressure and
shear-stress contributions. This is a special case of the result expressed more
generally by Eq. 2.58.

Another stress measure that we shall encounter is the second Piola-
Kirchhoff stress tensor
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-1 -
Tw=—F;F, ti . (2.64)
VR

This stress tensor arises as the force conjugate to the strain tensor E in a
thermodynamic theory of elastic materials (see Chap. 6). The symmetry of t
implies the symmetry of this tensor.

2.4 Governing Equations

The mechanical behavior of the material under consideration is governed by the
principles of conservation of mass, and of balance of momentum, moment of
momentum, and energy. These relations are usually expressed by partial differ-
ential equations, but motions such as those in which shocks are embedded
involve discontinuities that necessitate using a more general expression of these
principles.

The principle of conservation of mass postulates that the mass of any part,
@, of a material body is unaltered by a motion taking this material to a configu-
ration p(f) at time . Denoting the mass density (mass per unit volume) of the
material when it is in its current configuration by p(x,?), the mass of @ is
given by

M= p(x,Hdv. (2.65)
(1)
The principle of conservation of mass then takes the form

M= di I o(x, )dv =0, (2.66)
t
p(1)
where the equality must hold for any part @ of the body.

The principle of balance of momentum postulates that the rate of increase of
momentum of @ is balanced by the momentum supplied by applied forces
during the course of a motion taking this material to a configuration p(f). The
momentum of @ can be expressed in the form '

j p)'Ci dv N
140

and the rate at which momentum is supplied by applied forces can be expressed
in the form

J. t,(“)ds+J‘ pfidv,
(1) 120
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where f is an extrinsic body force per unit mass of material, s(f) is the surface
of the part @ of the body at the time £, and n(x,#) is the unit outward normal
vector to the surface. The first integral accounts for the total force applied by
the surface traction distribution and the second integral accounts for the total
force applied to internal parts of ® by such extrinsic means as gravity.

Using these representations, we can express the principle of balance of mo-
mentum in the form

-5-’7 pxidv=J t,-(")ds+J‘ o fidv. Q.67)
p(0) ) #(t)

The principle of balance of energy postulates that the rate of increase of
total energy of @ is balanced by the encrgy supplied by forces applied to the
surface, heat conducted through the surface, extrinsic forces applied within the
volume of the body, and an extrinsic supply of heat deposited within the volume
of the body. The energy of ® can be expressed in the form

I p(tg (e+1x%)dv, (2.68)

where €(x,?) is the specific internal energy (i.e., internal energy per unit
mass) of the material and x;X;/2 is the specific kinetic energy. The rate at
which energy is transferred by applied forces, heat conduction out of the body,
and an extrinsic heat supply, can be expressed in the form

J. ™ %, ds—j qgini ds+'|. pf,-ic,a’v+j prdv. (2.69)
s(t) s(t) 0] J20)

In this expression, q is the heat flux vector such that q-n = g;»; is the rate at
which energy is transferred out of the body through a unit area of the surface
(in the current configuration) and # is the rate at which extrinsic sources supply
heat to interior parts of the body (per unit mass of material). The first integral
in the foregoing expression accounts for the rate at which work is done by the
surface-traction distribution, the second integral accounts for the rate at which
energy is conducted to the body through its surface, the third integral accounts
for the rate at which work is done by extrinsic body forces and, finally, the
fourth integral accounts for an extrinsic heat source.

Using these representations, we can express the principle of balance of
energy in the form

ple+iun)dv=| (% —gn)ds+ | (pfii+prydv, (2.70)

d
dt J py 50 0

where the equation must hold for any part of the body.
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The principle of conservation of moment of momentum is satisfied if, and
only if, the Cauchy stress tensor is symmetric (see, for example, [72,82,100]).
This requirement is imposed when the constitutive equations describing the
response of a specific material are developed, so it does not lead to a field
equation.

2.4.1 Differential Equations Describing Smooth Fields

Using Eq. 2.7, we can express the principle of conservation of mass, as
represented by Eq. 2.66, in terms of the Lagrangian coordinates:

M =§t- j p(x(X, 0, )JdV =0. @.71)
P

Since the domain of integration is now independent of time, we can
interchange the order of integration and differentiation when the flow is smooth
enough for the derivative of the integrand to exist. This gives the equation

J' (pJ) dV =0. (2.72)
P
Since this equation must hold for any part, ®, of @, the integrand must vanish:
-gt-(p(x,t)J(x,t))=pJ+pJ =0, (2.73)
or, using Eq. 2.22,
pHpFii =0, (2.74)

Using Eq. 2.15, this result can be written

op(x, ) + o(pxi) _0, @.75)
ot Ox;

or, in brief notation,
pr+(pxi),i=0. (2.76)

It is important to note that the equation of conservation of mass in the form
of Eq. 2.73 can be integrated to yield the result

pX,)J(X,)=9(X), .77)

where 9(X)is an undetermined integration function. If the body is in its
reference condition at some time ¢*, then the integration function can be
evaluated and we find that p(X, £}J (X, #) = pr(X), which we often write
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detFX, n=prX)/p(X,1), (2.78)

an integrated expression of the principle of conservation of mass. This result is
the same as that of Eq. 2.23.

Under conditions of sufficient smoothness, the principle of balance of mo-
mentum, as represented by Eq. 2.67, can be transformed to the reference
configuration, the material derivative taken inside the integral, and that expres-
sion manipulated to yield the result

0= J‘ [(Pxi-])."(tji,j+pfi)J]dV= j [(pi‘;)'+pi‘iij,j —tjj,j+pfi]JdV.
P P

2.79

In obtaining this expression, we have used the divergence theorem to transform
the surface integral associated with the surface traction vector to a volume
integral involving the stress gradient.

As before, the requirement that this equation hold for all parts @ of the body
necessitates that the integrand vanish, a result that can be placed in the form

o, . o . . .
§(pxz)+§j(px, Xi—ti)=pfi. (2.80)

Further manipulation of this equation, and use of Eq. 2.76 leads to the conven-
tional expression of the principle of balance of momentum in the form of a
differential equation:

Lij+pfi=pXi. .81
Proceeding with the left member of Eq. 2.70 as before yields

0 .. 0 N . .
5;[p (s+—;-xixi)]+5;;-[p(s+%xix,')xj ~tiXi +qi ]:pf,- xi+pr, (2.82)

and making use of Eqs. 2.74 and 2.81 permits this result to be placed in the
more conventional form of the expression of the principle of balance of energy:
. ~1
pe=tiFy Fij —qii +pr==4 % j—qii+pr, (2.83)
or, since t is symmetric,
pe=t;dji—qii+pr. (2.84)
The term

W=t;%;=tidy (2.85)

appearing in the energy equation is called the stress power.
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Summary: Eulerian Form of the Equations of Balance. The differential equa-
tions representing the principles of conservation of mass and balance of mo-
mentum and encrgy are

o0 _,
ot ox;
Otji oxi . O%
—_— _+x-———-— e i 286
Bx; P( a ax,-] pf (2.86)
253_’_*_@5__ ._t....a_xi_—.._éﬁ.p r
p ot ' Ox; Y ax]- Ox; pr-

Since the independent coordinate appearing in these equations is the Eulerian
coordinate, x, they are said to be in the Eulerian form.

When Eqs. 2.86 are restricted to uniaxial motions, they take the simpler
form:

%, (bi)=0
ox

ot
ot ox Ox .
e e o e = - 2.87
ox p[at 6xx] 4 @87
Os 0Os | ox Oq
Zh x|t Z =L 4pr.
p[ o Ox x} ! ox Ox pr

Eulerian Form of the Equations for Smooth Fields in Inviscid Fluids. Any
stress present in an inviscid fluid consists only of pressure, i.e., it is of the form

Lj=-pdiy. (2.88)

When the differential equations of balance are specialized to this case they
become

op  0px) _

ot Ox;
op  (on . o
LN RPN S 2.89
o p[@t x’ax,] P/ (2.8

.a_s..g_jc..ge._ + g_x_f'.—__a.gi.f. r
o o) Pon o T

or, when further restricted to uniaxial motions,
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.9 (5=
+6x(px) 0

ot
op [(ox ox .
ox p(at axx] P @99
or o Ox 0

Lagrangian Form of the Conservation Equations. Although Eqgs. 2.86 pre-
sent the principles of conservation of mass and balance of momentum and
energy in their most familiar form, it is often convenient to have equations in
which the independent variables are (X, £) rather than (x, 7). Transforming the
independent coordinate from x to X in Eqs. 2.86 yields the result

op
—+pFi——=0
a Py,
o ox;
—(Fix Txy)—prR—=—~ f 291
aXJ( x Txs)—PrR o PR fi (2.91)
Oe OE1; 0Q:
= +
PR3t ot oX; PRI

where all of the field variables are functions of X and ¢ and Q; =J X1k q
relates the Lagrangian and Eulerian components of the heat flux vector. For the
case of uniaxial strain these equations take the form

ox ov

2 50
ax R
6t11 ox
ol 1 S S 2.92
Ve Pr, PR S (2.92)
s X 0

PR-———tn—a—x—=-—Q—+PR r.

ot 0X 0X

In writing these latter equations we have used the result (pr /p) 711 = fn. When
the material is an inviscid fluid Eqgs. 2.92 take the form

o _ v
x PR
op ox
——+pr—= 2.93
X Pr P PrS ( )
e X 0

pR__+p_6_'_x_.=-__Q_+pRr‘

ot 0X ox
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2.4.2 Jump Equations Describing Plane Shocks

A shock, also called a shock wave, is a propagating surface at which the dis-
placement is continuous but the mass density, particle velocity, stress, and other
ficld variables arc discontinuous. At these discontinuities, the derivatives
appearing in the differential equations developed in the foregoing section do
not exist, so those equations are meaningless. Nevertheless, the field quantities
appearing in the integral forms of the governing equations are defined almost
everywhere, so the integrals are meaningful. The discontinuities that occur at a
shock are constrained by the requircment that the integral equations be satisfied
in the neighborhood of the shock. In this section, jump conditions are devel-
oped for plane shocks embedded in smooth uniaxial motions. A general treat-
ment of curved shocks is unnecessary for the analysis of the problems to be
considered in the following chapters, and is beyond the scope of this book.

The integral form of the conservation laws of Egs. 2.66, 2.67, and 2.70 for
uniaxial motions is

d xb(t)

— p(x,Hdx=0
at J,.oy

() ()
— Pffdx=fn(xb(f))—f11(xa(f))+J‘ pfdx
at Jy 0 sa(t)

(2.94)
xb(t)

P p(e +1x%)dx =t (xu () X(xb (D) — 1 (%, () X(xa (1))
xa ()

xb (1)
+ I p(fx+rydx,

xa(t)

where x.(f) =x(X,,f) and xp(f) = x(Xs,?), for Xp > X,, are material sur-
faces. We consider application of these equations to the case of a shock embed-
ded in a smooth flow, as shown in Fig. 2.6. Since our primary interest is in
shock discontinuities we have omitted the heat flux term that would give rise to
dispersion.

T LA — T
Xa X3 xs x5 Xb x

Figure 2.6. Smooth density waveform containing an embedded shock



2. Mechanical Principles 27

Let us begin by considering Eq. 2.94,, representing the principle of conserva-
tion of mass. If the interval of integration (xa.,xy) is decomposed into three
parts, (xa,x3), (x$,x5), and (x5,xp), as shown in the figure, the equation
can be written

d * () xg (1) xb(t)
7 J‘ p(x, t)dx+J. p(x, Ndx + J‘ p(x,Hdx +=0. (2.95)

xa () P20) x5 (1)
We shall require that the surfaces x¢ and x5 move with the shock, so that
== =y, (2.96)

where us is the Eulerian shock velocity, the velocity with which the shock
moves along the x coordinate. Since the surfaces at x, and xp are transported
with the material, we also have

dx,
dt

=%(xa (), 1), and ‘;—"t" = %(xp(0), 1) . (2.97)

In the limit that x§-—-x% — 0, the integral over the range (x¥, xs) vanishes
since p(x,t) is bounded. Considering the remaining two integrals we have, by
Leibnitz’s theorem on differentiation of an integral with respect to a parameter,

dxa ()
dt

x$ (1) dxt
.[ Eedx_*-p(xg’t) 2 _P(xa(t),t)
xa (D) t at

(2.98)
0.

xb(t) _
p dxo (2) _dxs()
+ J dew(xb(t), 3] ” —-p(xs, ) e

xg (1)
Using Eqs. 2.96 and 2.97, we can write Eq. 2.98 in the form

x§(#) xb(t)

j z3—pdx + ?_de
a Of 5 Of (2.99)
=—[pJus +pGra () £(xa (1)) = p (e (1)) * (x6(1)),

where we have adopted the notation
[e]=¢"-¢€ (2.100)

for the change from the initial value, £, to the final value, £*, taken by the
variable £ as the shock passes a point. The quantity [£] is called the jump in
& . Since p(x,t) is smooth in each range of integration, Eq. 2.87; is satisfied in
each of the ranges. Substituting this equation into Eq. 2.99 gives
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J"‘g“’ o) , J""‘”a(px) "
@) 0% 50 0% (2.101)
= [plus ~p (xa () % (xa (0) +p (26 (D) % (36 ().

The integrals in this equation can be evaluated immediately and, after some
cancellation, we obtain the result

lplus =[p+], (2.102)

representing the constraint on the jumps that is imposed by the principle of
conservation of mass.

Proceeding similarly with Eq. 2.94,, representing the principle of conserva-
tion of momentum, we obtain

d x§ () xb(t)
— pxdx+ pxdx
dt

xa(t) s(®

xs
Differentiation followed by use of Eqs. 2.96 and 2.97 allows us to write this
equation in the form

x$ (1) . xb(t) . x$ (6 xb(t)
I ﬂp_x)dwj‘ de—j pfdx-—j ofdx
aw O d () x5t (2.104)

(2.103)

x3 (1) xb ()
=t11(Xb,t)—t]1(Xa,t)+'[ pfdx+J. pfdx.

xa(?) xg ()

xs(t)
=—[px]us +tu (Xo, )t (Xa, D +pa X3 —po x2.

Now, let us consider the derivative d(px)/0t . From Eqs. 2.8712 we have

Op __0(p%)
ot o
. (2.105)

QD.X_— _Qx_ﬂj_x — f

dx =P ot = ox b

SO we can write

d(px) O .5
——=—(n-px°)+ N 2.106
or 6x(11 pxY)+pf ( )

and Eq. 2.104 becomes
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.|-x§(t) xb(1) 3
—(tn ~px?)dx+ J. —(tn ~px*)dx
) O st O (2.107)

=—[pxJus +t1 (Xo, ) =111 (Xa, ) +pa X2 —pp 32,

or
[pxJus =[-tu+px?], (2.108)

the constraint imposed on the jumps by the principle of conservation of mo-
mentum,

Similar analysis of Eq. 2.943 leads to the condition
[pe+1x?) Jus =[p(e+1x2) %~ %] (2.109)

imposed on the jumps by the principle of balance of energy.

Eulerian Forms. In summary, the jump conditions representing the principles
of conservation of mass, and balance of momentum and energy as applied to
plane, longitudinal shocks are

[plus =[px]

[ps]us =[px? —tn ] (2.110)
|[p(s+-;—5c2)]|us =|[p(8+-;—5€2)56—t11 x]|

These results are easily expressed in terms of the variables u,and u; using
Eqs. 2.16 and 2.35.

As stated, these equations relate the nine variables $* ={p*,#};,e*, ¥*},
S ={p . f,e,x }, and us. If we assume that the state ahead of the shock,
S~, is known, then there remain the five variables §+and us . Using the three
jump conditions, we can express any three variables of the set S+, us in terms
of the other two.

Lagrangian Forms. The essential difference between the Eulerian and
Lagrangian and expressions of the shock-jump equations is that the latter
involve a Lagrangian measure of the shock velocity. The Eulerian shock
velocity is the rate at which the shock advances through the spatial frame, i.e.,
along the x coordinate. The Lagrangian shock velocity is defined in analogous
fashion as the rate at which the shock advances through the reference frame,
i.e., along the X coordinate.

We begin by calculating the relationship between these two measures of
shock velocity. Suppose that the shock is at the particle X at the time ¢ and
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propagates a small distance to arrive at the particle X + AX at the time £+ Ar.
The Lagrangian shock velocity is then the limiting value of Us = AX /At. Let
the initial spatial position of the particle X be x, If the material ahead of the
shock has the density p-, the initial position of the particle X + AX will be
x+(pr/p~)AX . If the particle velocity in the material ahead of the shock is
x-, the particle X +AX will move a distance x-Af in the time it takes for
the shock to arrive there from its initial position, X. Thus, the distance the
shock travels along the x axis in the time Ar is (pr/p )AX +x-Af. The
Eulerian shock velocity is us = Ax/At so we have

AX . .
us=PR 22 45 = PRy vk, (2.111)
p- At p-
or
Us =2 (us-%7). (2.112)
PR

When we substitute the expression (pr/p~)Us +x~ for us in Egs. 2.110,
we obtain the shock-jump equations in the Lagrangian form

prUs[-v]=[x]
prUs[x] =[-tu] (2.113)
PRUS[[8+15J'62]]=|[—I1132:]].

Subsidiary Jump Equations. Elimination of the shock and particle velocities
from either of Eqs. 2.110 or 2.113 yields the result

[e]=1(-f-t)[-v], (2.119)

called the Rankine—Hugoniot equation, which involves only thermodynamic
variables. This important equation provides the means for introducing the effect
of a shock transition into a thermodynamic analysis.

With the use of Eq. 2.1131, Eq. 2.1133 can be placed in the form
.
T % N T
lel=11x] ST [x]. (2.115)

Useful expressions for the shock velocity are

i

and the particle velocity jump is related to the stress and specific volume jumps

by the equation
[]={l-m][-v] "~ @.117)
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For a given value of Us Eqgs. 2.116 represent lines, called Rayleigh lines,
connecting the initial and final states in the #; -v and #;—x planes. The
equations show that steep Rayleigh lines correspond to high shock velocities.

2.4.3 Jump Equations Describing Plane Steady Waves

In the foregoing section, we studied propagating discontinuities in stress, den-
sity, etc. One might doubt that real materials could respond in this discontinu-
ous fashion, although most would agree that a thin, but smooth, transition
might be satisfactorily approximated as a discontinuity. In this section, we
consider what we shall call a sfeady wave or structured shock. In particular, we
shall consider waves in which the motion is uniaxial, as described by Eqgs. 2.26
or 2.27, but with the additional constraint that the disturbance propagate
unchanged in form and at a constant velocity. This means that the displacement
can be described by the equation

UX,)=U(Z) where Z=X-Ct (2.118)

in the Lagrangian representation, or
u(x,)=U(z) where z=x-ct (2.119)
in the Eulerian representation.

We intend that these waveforms be like shocks in that they represent transi-
tions between given initial and final states, but that the transitions be smooth,
as illustrated in Fig. 2.7. Accordingly, we establish the initial and final states as

S :x=->x and v-—>v asZorz— oo,
(2.120)
St:x>xtand vovtasZorz—>—o,

respectively. In addition, we shall establish the limiting stress states fj; —> i
and 1 = ) as Z or z - * o, respectively.

When the displacement is in the form of a steady wave, the displacement
gradient and particle velocity are simply related. We have

Ux =Uz, Ur=-CUz, (2.121)
SO
v _ .
I_W_ Uz, x=-CUz, (2.122)
and

(2.123)
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—111

or
x

Zorz

Figure 2.7. Illustration of a shock and a smooth steady wave.

The wave is analyzed using the equations of balance in Lagrangian form,
Eqs. 2.92. When specialized to the case of a steady wave, the equations of
balance of mass, momentum, and energy (now including heat flux) can be
written as

0 .
52(x+pR Cv)=0

Edi(tuﬂ)k Cx)=0 (2.124)
d(=prCErD) _y (z) 2L,
dz dz

Since pg and C are constants the first and second of these equations are
immediately integrable to give

x(ZD)+pr Cv(Z)=x"+pr Cv~
(Z)+pr Cv(Z) PR (2.125)
11(Z) +pr C#(Z) = tii +pr C %",

where the constants of integration have been chosen using data for the state S~
If Egs. 2.125 are evaluated in the limit Z -—» —co the result can be placed in the
form

1 #i-m 1 xt—-x

R FE TR (2.126)

Comparison of this result with that of Eq. 2.11612 shows that the steady wave
velocity is the same as the velocity of a shock transition between the same states
so that we can write

C=Us. (2.127)

Noting the similarity of Eq. 2.125, to the shock-jump condition 2.113;, we
write the former in the form
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PrUs [x]=[-t1], (2.128)

with the understanding that the equation describes the jump from the initial
state to the state at any point in the waveform. Applying Eq. 2.128 to a point
Z1 and then to another point Z, in the waveform, and subtracting the results
shows that this equation actually applies to the jump between any two points of
the steady waveform.

When we take the jump (in the foregoing sense) of Eq. 2.123 and use
Eq. 2.127 we arrive at the equation

pr Us [-v]=[x], (2.129)

a result analogous to that of Eq. 2.113; except that it is applicable to the jump
between any two states in the steady wave.

Equations 2.128 and 2.129 can be combined to yield
PrUs? [-v]=[-m]. (2.130)
a relation between jumps in the stress and specific volume.

Using the energy equation 2.124; one can show that
pr Us [e+122)=[-mi+0], (2.131)

where the equation describes the jump between any two points in the waveform.

If 0=0, i.e. the material does not conduct heat, Eqs. 2.128, 2.129, and
2.131 are entirely analogous to the shock-jump equations 2.113, and the steady
wavespeed, as given by Eq. 2.126 is the same as the speed of propagation of a
shock transition between the same states §~ and §*. The steady wave is the
same as the shock in every way, except that it need not be a discontinuity, and
it is this similarity that justifies describing it as a structured shock.

Since a shock of the sort discussed in previous chapters is a discontinuous
transition between two states there can be no meaningful discussion of the path
on stress—volume, stress—particle velocity, or other graphs that is followed by a
material point as the wave passes. Such a path does exist for a structured shock,
however, and Eqs. 2.128 and 2.129 show that the path followed by the state
point is the Rayleigh line.

2.5 Concluding Remarks on Mechanical Principles

Kinematical and dynamical matters such as are discussed in this chapter are
among the best-established topics covered in this book, but a few remarks on
their completeness and applicability are in order.
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When analyses are conducted on the basis of uniaxial motion, any solutions
obtained will, of course, be of this form. Such motions cannot usually be ex-
pected to prevail at the microscale where the effects of grains in polycrystalline
materials and other inhomogeneities can be expected. Phenomena such as
formation of “hot spots” in shock-compressed explosives are known to have a
profound affect on the initiation of chemical reactions. Solid-state chemical
reactions occur in many materials that are not explosives. In both cases, these
effects are attributed to mechanical and thermal irregularities in what is nomi-
nally a uniaxial motion. Evidently, uniaxial motions occur in real materials
only in some average sense. These fluctuations have been little studied (but see
[5,79,83]) and many of their possible effects are unknown. In addition to these
microscale effects, investigations have shown that uniaxial motions can exhibit
unstable responses to small perturbations. Instabilities of this sort are less
important in solids than in fluids because their growth is inhibited by the ability
of the solid to resist shear stress. Nevertheless, large-scale effects of these
instabilities are occasionally apparent.

2.6 Exercises

2.6.1. A rod is subjected to uniaxial extension so that its length changes from L
to /. For this case, strain € is conventionally defined as the ratio of the change
in its length to the length itself. For finite strains, it makes a difference whether
this is interpreted to mean ¢ =(/ - L)/L or ¢ =(/ - L)// . The exercise consists
in evaluating the longitudinal component of Uy, ux, F, E,ande, both exactly
and in the limit of small deformation, and explaining what they measure and
how they relate to one another.

2.6.2. For simple shear, as illustrated in Fig. 2.3a, relate F12, E12, and ez to
y and explain exactly what each quantity measures. Interpret F2 and ezz.
Discuss the small-strain limits of these quantities.

2.6.3. Derive linear equations for strains, etc. that are valid in the case of small
deformation.

2.6.4. Propose a definition of Eulerian compression analogous to the definition
of Lagrangian compression of Eq. 2.25. Derive equations relating the two
measures of compression.

2.6.5 Show that symmetry of the Cauchy stress tensor is a necessary and
sufficient condition for satisfaction of the requirement of balance of moment of
momentum. You may find it useful to consult an elementary text on elasticity
theory or continuum mechanics.

2.6.6. Derive the Lagrangian forms, Eqs. 2.91, of the field equations by trans-
formation of the Eulerian forms of Egs. 2.86. Hint: you may find the equation
(Fir 1J),; =0 useful [103, Eq. 18.1].
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2.6.7. Derive Egs. 2.92 from Egs. 2.91. Hint: you may find the equation
(J F).1 =0 useful [103, Eq. 18.2].

2.6.8. Equation 2.112 relates Us and us using conditions in the material
ahead of the shock: Us =p~(us —x~)/pr. Show that the same relation holds
with p~ replaced by p* and x~ replaced by x*.

2.6.9. Derive Eqs. 2.113 from Eqgs. 2.110 and 2.112.

2,6.10, When a shock passes through a material, both its specific internal
energy and its particle velocity change. Show that, when the material ahead of
the shock is unstressed and at rest, the energy added at the shock transition is
equally partitioned between internal energy and kinetic energy.

2.6.11. Derive the jump conditions of Eq. 2.110 by making an explicit calcula-
tion for a slab of material comprising two regions in which constant fields are
separated by a plane longitudinal shock.



CHAPTER 3

Plane Longitudinal Shocks

Study of the propagation and interaction of plane longitudinal shocks is a prin-
cipal topic of this book. A shock separates the material in which it is propagat-
ing into a part through which it has passed, called the upstream material or
material behind the shock, and the material into which it is advancing, called
the downstream material or material ahead of the shock. The state of the up-
stream material is characterized by the four variables S* ={p*,f, e, %"}
and the state of the downstream material is characterized by the variables
S ={p. 41, &, x }. Knowledge of the shock velocity, either Us or us, com-
pletes the description of the wave. As we have seen, these nine variables must
satisfy the three jump conditions of Eqs. 2.110 or 2.113. Usually, the values of
the downstream variables, S ~, are given as initial conditions. The strength of
the shock depends upon the stimulus producing it, and this stimulus is usually
characterized by a boundary condition giving the value of one of the upstream
variables. This leaves the shock velocity and three of the variables in the up-
stream set S* unknown. The three jump equations must be augmented by an
additional equation describing the response to a shock transition of the specific
material of interest. When this is done, all of the variables characterizing the
transition can be determined.

3.1 Full-field Solutions

The simplest shock-propagation problem arises when a material halfspace in a
uniform state is subjected to a step change in the normal stress or particle ve-
locity applied over its surface. In this case, a shock of constant amplitude origi-
nates at the surface and propagates into the material. The downstream material
remains undisturbed until the arrival of the shock, at which time it undergoes a
transition to the upstream state that is determined by the imposed boundary
condition and the nature of the material itself. The shock is a discontinuous
transition between uniform states, as shown in Fig. 3.1. It is easy to see that,
when f=0, ¢=0, and r=0, any constant state §={p, f1;, &, ¥} satisfies
the field equations 2.87 or 2.92, so satisfaction of the jump conditions ensures
that the integral forms of the balance equations are satisfied. The disturbance
just described can be produced and studied in the laboratory.
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Figure 3.1. Shock transition between uniform states

3.2 Propagation of a Shock into Quiescent Material

For quiescent material we assume that x~ =0 and p~, ¢i1, and &~ are known.
In this case, the jump conditions in Eulerian form, 2.110, become

+_ P Us
[ _us__)'c+
[[—f11]}=p_5€+us (3.1)
12 1 _feY ot
[[8]]—-2-(x+) +ﬁ§( tll)x .
The Lagrangian form of these equations is
+__ P PrRUs
prUs ~p~x*
[-ti]=prx*Us (3.2)
1,442 1 -y pt
el==(x")"+ —in) x".
[e] =9 G o (1)

These equations show clearly that the common experimental practice of meas-
uring x* and us (or Us) suffices to determine the remaining three variables
characterizing the state of the material behind the shock.

When solids or liquids are subjected to strong shocks, it is usual to ignore
the effect of pressures near one atmosphere, so we take 11 =0 and p~ =pr.
Since the internal energy in the reference configuration can be chosen to be
zero, we also have £~ = 0. In this case, Eqgs. 3.1 become

+_ PRUS
us —x*

s —tﬁ—:pr‘«“FuS, and g*t =%(x+)2 (33)

Three useful relations derivable from the foregoing are
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x* =pR[[—v]]us
-t ==(pr us)?[-v] G4
3+=%(‘t1+1)ﬂ“’]]-

Note that the initial condition #; =0 cannot be imposed on gases because
they cannot exist at zero pressure.

The Lagrangian shock velocity satisfies the equation
Us =(us —x)/(1+Ux),

where the same value is obtained whether we use x* and U or ¥~ and Ux .
Since the state of the material ahead of the shock is usually known, we adopt
the latter option. If x~ =0, we have

us p-
U = = Uus. 3.5
ST1+U; PR @3)

When the quiescent material ahead of the shock is in its reference state,
Us =us (3.6)
and the Lagrangian and Eulerian forms of the jump equations are identical.

It is useful to note the form taken by the jump conditions in the limit of
weak shocks. When the shock propagates into a material in its reference state,
SR, in which #1=0, p~=pr, £ =0, and x~ =0, the lowest-order ap-
proximation to Eqgs. 3.1 is

+= X
pT=Pr (l +us )
-8 =pr us x*t 3.7
e"= ("),
where ug is the longitudinal soundspeed in the reference state.

In the limit of small jumps in #11 and v, Eq. 2.116, takes the form

1 (dr 1/2
- 1
Us = or ( T ) , (3.3

which we identify as the Lagrangian soundspeed (see Chap. 9), the speed of
propagation of weak waves, often called acoustic waves, through the reference
configuration.
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3.3 Symmetrical Plate-impact Experiment

The simplest experiment that can be conducted to study shock propagation in a
solid consists in impacting a plate of the material to be studied against a target
plate of the same material, as depicted in Fig. 3.2. The plates are usually
circular disks of diameter several times greater than their thickness. They are
prepared to have very smooth, flat faces and are aligned so that the impact
occurs simultaneously over the entire face. An experiment conducted under
these conditions introduces a shock propagating from the impact face into the
interior of each plate. These shocks produce the uniaxial motion of Eqs. 2.26 or
2.27 in a region near the axis of the disks during the time interval between the
moment of impact and the arrival of a wave originating at the periphery of the
impact face. Typical sample thicknesses are in the range 1-20 mm. The
diameter is not important provided that it is sufficient to delay the arrival of the
wave from the target periphery until the required measurements can be
completed. The impact velocity can easily be measured to high precision and,
as we shall see, yields the particle velocity of the material behind the shock
with similar precision. Among the other variables entering the jump conditions,
the easiest to measure is the shock velocity. Accounts of experimental methods
are given in references [4,9,21,77,110].

Target
Launch Projectile Impactor disk
tube body disk

Figure. 3.2. Schematic configuration of a plate-impact experiment. The projectile
guides the impactor disk as it is accelerated along the launch tube (shown in cutaway
view) by compressed gas or gun propellant. It collides with the target disk placed
slightly beyond the end of the tube

We shall now consider what can be learned about the material from the
experiment just described. In this experiment, one of the samples, the fargef, is
at rest and the other, the impactor, is driven into the target at a known
projectile velocity, xp . The stress, mass density, and specific internal energy of
both the impactor and target material have known reference-state values.
Experiments of this sort are usually described by diagrams such as those shown
in Fig. 3.3

The experiment that we have described is called a symmeftric-impact ex-
periment because the impactor and target are of the same material. It is easy to
see (for example, by viewing the experiment in a coordinate frame in which the
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Figure 3.3. Plate-impact test configuration (side view) and space—time diagrams of the
interaction. The side-view figures show the relative positions of the parts, indicate
notation, etc., but the horizontal dimension is much too great in comparison to the
vertical dimension for the figure to be scale representations of the actual parts

two plates approach each other at equal but oppositely directed velocities) that,
because of this symmetry, the particle velocity imparted to the target plate is
one-half the projectile velocity: x* = xp/2. Assuming that the shock velocity
has also been measured, the remaining variables comprising the state §* are
obtainable from Eqs. 3.1 or 3.2.

3.4 Hugoniot Relations

The three shock-jump equations contain no information characterizing the
differing responses of specific materials, and this must be provided before
shocks can be analyzed. If shocks of various strengths are introduced into the
material and the response recorded in terms of the resulting value of one of the
other variables, one obtains points on a curve describing the locus of states
achievable by shock transition from the given initial state. This locus is called a
Hugoniot curve or simply a Hugoniot (after H. Hugoniot [58]). The Hugoniot
curve, which depends on the initial state, §~, is characteristic of the specific
material studied. It contains the minimum amount of information about the
material that suffices to solve shock-propagation problems in terms of the
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variables under consideration. A Hugoniot curve falls far short of a complete
description of material response and additional thermodynamic information is
required to determine temperature and entropy jumps at the shock or to solve
other wave-propagation problems. On the other hand, a Hugoniot curve can be
determined from a comprehensive material model by thermodynamic and
mechanical analysis (see Chap. 5).

There are ten pairs of the variables v, #11, X,€ and Us (or us) that provide
equivalent representations of the Hugoniot curve. Any of these representations
can be transformed to any of the other possible representations using the jump
conditions, so they all embody the same information. Three of these ten
Hugoniots are particularly important: The #; —v Hugoniot or, equivalently, the
hi-p or f;—A Hugoniot, is an important thermodynamic relation, the
fi1 —x Hugoniot is used for analysis of shock interactions, and the Us-x
Hugoniot is frequently the most direct representation of shock wave measure-
ments. Other Hugoniots, for example those involving temperature, are also of
interest and are discussed in Chap. 5.

It is important to remember that a Hugoniot curve is the locus of states
achievable by shock transition from a particular initial state, $~. When the
initial state is changed, the Hugoniot curve also changes. The Hugoniot is said
to be centered on the initial state, and the one centered on the undeformed and
unstressed state is called the principal Hugoniot curve. In the circumstances
most often of interest in problems of shock propagation in condensed matter,
the observed behavior is essentially unaffected by pressures of the order of one
atmosphere and is not strongly sensitive to temperature variation in the range
encountered in the ambient atmosphere of the laboratory. Accordingly, unless
explicitly stated otherwise, a Hugoniot curve for a solid or liquid can be as-
sumed to correspond to material in the state h1=0,6"=0,p” =pr and
x~=0. Because material properties are invariant to rigid translations, a
Hugoniot can be recentered to any desired value of initial particle velocity by
simple translation. Reflection in any line X =const. reverses the direction of
shock propagation.

When additional thermodynamic information is available, a Hugoniot can
be transformed to a different initial thermodynamic state. Two material re-
sponse curves of particular interest in calculating shock interactions are
Hugoniot curves and decompression isentropes centered at shock-compressed
states. The former are called second-shock Hugoniots. Although calculation of
these curves must await development of some thermodynamic equations in
Chap. 5, we will see that these curves lie sufficiently close to the principal
Hugoniot that they can often, to good approximation, be replaced by this
Hugoniot. This is the course that we shall adopt in this chapter. Some compari-
sons that indicate the accuracy of these approximations are given in Sect. 3.7.2.
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Stress—Volume Hugoniot. Figure 3.4 shows a typical #11 —v Hugoniot, with
points corresponding to a shock transition from §~ to §* marked. The straight
line connecting s~ and S$* is called the Rayleigh line for the transition. The
shock speed is given by Eq. 2.116;, which shows that it is related to the slope of
the Rayleigh line: Steeper Rayleigh lines correspond to higher shock speeds.
From Eq. 2.114 we sce that, in the absence of heat flux and extrinsic energy
deposition, the increase in specific internal energy that occurs at a shock tran-
sition is measured by the area under the Rayleigh line, as indicated by the
shading on Fig. 3.4. Shock transitions are irreversible thermodynamic proc-
esses, so this jump in specific internal energy is greater than occurs in isen-
tropic compression by the same amount. Detailed discussion of this issue must
await our development of the necessary thermodynamic relations in Chap. 5.
We shall find that the jump in entropy that occurs upon passage of a shock is
proportional to the cube of the volume change, so the isentrope and the
Hugoniot through a given point differ only slightly for small compressions.

A
—-in

Figure 3.4. Typical stress—volume Hugoniot

Stress—Particle-Velocity Hugoniot. A typical #; —x Hugoniot is illustrated
in Fig. 3.5. The shock velocity is related to the slope of the Rayleigh line ac-
cording to Eq. 2.1162: Us =[-#f1]/(pr [*]) . The Hugoniot shown in the fig-
ure corresponds to a shock propagating in the +X direction, i.e., with positive
velocity. When the shock velocity is negative, the relevant Hugoniot is obtained
by reflection of the one shown about the line x =x".

Linear Us —x Hugoniot. When experiments such as the symmetric plate-
impact experiment are conducted on a given solid over a range of projectile
velocities, it is often observed that the velocity of the shock is proportional to
the imparted particle velocity. The experiment is usually done on material at
rest, at zero pressure, and at a specific reference temperature (usually ~300K).
Under these conditions, the linear result can be expressed in the form

Us =Cp+Sx+, (3.9)
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it 331

x
Figure 3.5. Stress—particle-velocity Hugoniot (centered on §™) for a typical material

where Cg is a material constant that is usually found to be approximately equal
to the bulk soundspeed in the material and S is a dimensionless material con-
stant.” For most materials, which we shall call normal materials, the value of S
is positive, typically having a value of about 1.5. A few materials become more
compressible as the compression is increased over a limited range, suggesting
that their behavior might be representable by Eq. 3.9 with S <0. We regard
this as an anomalous behavior requiring careful special attention, and assume
henceforth that S > 0. As we shall see, only compressive shocks can propagate
in material governed by Eq. 3.9 with S> 0. Decompression processes will be
shown to produce smooth waves.

Since the properties of a material are invariant to rigid translations, Eq. 3.9
can be written in the more general formt

Us = Cg(sgn[x]) +S [ %] (3.10)

to extend its applicability to waves propagating in either direction into material
moving at a constant velocity, x~ #0. Although we have written Eq. 3.10 as
an expression for the Lagrangian shock velocity, we recall that the Lagrangian
and Eulerian shock velocities are the same for the usual conditions of the
experiment in which the shock propagates into a body at rest in its reference
configuration. Values of pgr , Cg, and S for a few materials are given in Table
3.1 and extensive compilations are available in many publications, including
[10,62,74,77,105].

Equation 3.9 is one of the earliest results obtained in quantitative experi-
mental investigations of shock compression of solids, and forms the basis of

* Measurements suggest that a quadratic term be included in the Us - x Hugoniot for a
few materials, even in the range of moderate pressures. When very high pressures are
considered, a small positive quadratic term can be included in the Hugoniot to capture
effects that cause it to pass through a point of vertical tangency and fold back on itself
[68, p. 112].

T sgnE&=1for20and~1for£<0 .
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Table 3.1. Shock parameters for several materials, including impedance
in the weak-shock limita

PR Cg Zr
Material kg/m? m/s S GPa/(km/s)

Plexiglas 1186 2598 1.516 31
NaCl 2165 3528 1.343 7.6
Beryllium 1851 7998 1.124 14.0
Aluminum (2024) 2785 5328 1.338 144
Bismuth 9836 1826 1.473 17.6
Lead 11,350 2051 1.460 23.8
Copper 8930 3940 1.489 358
Gold 19,240 3056 1.572 58.0
Tungsten 19,224 4029 1.237 77.5
Iridium 22,484 3916 1.457 88.5
Al,O3 3988 11,186 1.05 44.1

2 Data from [77).

much of the practical application of this subject. This Hugoniot is most appli-
cable to description of the behavior of solids in the pressure range above about
5-10 GPa, where the average stress (pressure) is sufficient to render the shear
stresses negligible. In this case the response of the solid to shock compression is
similar to that of a fluid, a point to which we shall return later. Note that a
pressure of 5 GPa is rather large compared to values usually encountered by
engineers, yet it is near the lower limit of the range of interest here.

Substitution of Eq. 3.10 into Eqs. 2.113 yields the jump equations

[+]

[-v]

" ox(CaanliD + ST
p* == (Casgn[]) + S[x])[] (.11)
[s]= 1177+ : ,
2 p (Ca(sgn[]) + S[#])

where we have written p in place of —f; in recognition of the fluid-behavior
approximation usually associated with Eq. 3.10.

Equation 3.11; is the pressure—particle-velocity Hugoniot associated with
Eq. 3.10. The pressure—volume Hugoniot associated with Eq.3.10 can be
obtained from Eqgs. 3.11;2 in the form
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o_ (PrCB)?(vR-V) _ prCEA
[1-prSOr-VP  (A-58)*"

(3.12)

In the common special case of a compression shock propagating in the +X
direction into material that is at rest, undeformed, and at zecro pressure
Eqs. 3.11 take the simpler forms

. Pr(CB + Sx¥)
P C+(S~Dx*

pt =pr(Cs +Sx*)x*

p+ At
2pr (.13)

et =%(x+)2 +

and, since we also have Eq. 3.9, there are now four equations that permit any
four of the unknown variables to be expressed in terms of the one remaining.
This remaining variable is determined from the boundary condition and serves
as a measure of the shock strength.

Plots of some Hugoniot curves for copper and aluminum alloy 2024 are
given in Fig. 3.6.
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Figure 3.6. Hugoniot curves for copper and aluminum alloy 2024. The curves are
plotted using parameters taken from Table 3.1

3.5 Longitudinal Stability of Plane Shocks

Thus far, we have assumed that shocks exist and we have developed jump
conditions governing their behavior. Shocks do exist, of course, but smooth
waves also exist. To understand whether a given stimulus will produce a shock
or a smooth wave, we need to study the differential equations 2.87 or 2.92 in
conjunction with the jump conditions. We defer this to Chap. 9. We can,
however, conduct a simple examination of the longitudinal stability of shocks
as an indication of what to expect. Suppose a shock of the form shown in
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Fig. 3.7a is somehow slightly disturbed and separates into two shocks as indi-
cated in Fig. 3.7b, i.e. a small part of the jump falls behind the main shock. If
the shock of Fig. 3.7a is to be considered stable, this small shock must propa-
gate faster than the main shock so as to overtake it and restore it to its original
amplitude. To see whether or not this occurs, consider the two stress—volume
Hugoniot curves in Fig. 3.8. When the Hugoniot has the concave upward shape
indicated in Fig. 3.8a, the Rayleigh line connecting B to C is steeper than the
one connecting A and B, so the second wave is advancing through the material
faster than the leading wave and will restore the original one-step waveform.
Similar consideration of the behavior of a small disturbance postulated to
advance beyond the main shock, as shown in Fig. 3.7c, shows that it will be
overtaken by the main shock, thus restoring the original unperturbed waveform.
On this basis, we say that a shock transition from A to C is longitudinally
stable. The same considerations applied to a transition from C to A indicate
that this transition is unstable. The transition from A to C is a compression
process whereas that from C to A is a decompression process. The stress—
volume Hugoniot for most materials is of the form given in Fig. 3.8a, so
compression shocks are stable and decompression shocks are unstable. We shall
see in Chap. 9 that a decompression shock evolves as a smooth disturbance
called a centered simple wave.

~t
-2 — = T
or N I B e
¥ — >
@) ®) © X

Figure 3.7. Two perturbed versions of the shock shown in part (a) of the figure are
shown. In each case, the perturbation involves separation of a small part of the shock
from its main portion. The drawings are made for the case in which the Hugoniot is
concave upward, as illustrated in Fig. 3.8a. Part (b) represents the case in which the
perturbation propagates slower than the main shock and part (c) of the figure shows the
case in which the perturbation propagates faster than the main shock. the drawing is
made for the case that the stress—volume Hugoniot is concave upward, as shown in Fig.
3.8a

When the compression curve has the unusual form shown in Fig. 3.8b, as it
does over a limited range of state for a few materials (e.g. vitreous silica for
pressures from 0 to about 3 GPa), the converse sitnation prevails: Compression
waves spread as they propagate, whereas decompression shocks are stable and
smooth decompression waves coalesce into shocks.
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Figure 3.8. Stress—volume Hugoniot curves

Often the thermodynamic condition that the specific entropy at a material
point cannot decrease as the shock passes is used to rule out decompression
shocks in normal materials. As we shall see, this requirement leads to the same
result that we have just obtained.

3.6 Unsymmetrical Plate-impact Experiment

In Section 3.3 we noted that planar impact of two plates produced a shock
propagating away from the impact interface into the interior of each plate. A
key point of that section was that, because the plates were of the same material,
the target plate material was accelerated to one-half the projectile velocity and
the impactor plate material was decelerated to this same velocity.

In this section, we consider the case in which the impactor (also called pro-
jectile) and target plates are of different materials, with the Hugoniot of the
impactor plate being known. The situation is as depicted in Fig. 3.9. The curves
shown are p—x Hugoniots of the impactor and target materials (the latter
indicated schematically by a dotted line since its quantitative description is
presumed unknown). The target-plate Hugoniot is oriented for a right-propa-
gating shock and passes through (p~,x7)=(0,0) since the shock will propa-
gate from the interface into the target and produce a transition from this state to
some state (p*, x*). The impactor-plate Hugoniot is oriented for a left-propa-
gating (negative velocity) shock and passes through (p, x) = (0, xp) , the initial
state of the impactor material. Since the interface is in compression it remains
in contact and the particle velocity behind the shock is the same for each plate.
Similarly, the pressure must be the same in the material on each side of the
interface since the interface itself has no mass. Therefore, the values of p and
x in the region between the two shocks lie at the intersection of the two
Hugoniots. Once the intersection is known, Egs. 2.113, applied to each shock,
suffice to determine the other variables and, thus, the complete solution of this
problem.
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Figure 3.9. Unsymmetrical plate-impact experiment. The Hugoniot of the target plate,
presumed unknown, is illustrated by a dotted line.

As an example, suppose the Hugoniot for the impactor plate is given by
Eq. 3.11;, with known parameter values:

P =pre [ - Cop +8p (& - %p)] (¥* ). (.14)

Then, suppose that the impact velocity, xp, and the shock velocity in the target
plate, Ust, arc measured in the experiment. Applying Eq. 2.116; to the present
situation gives

p* =prr Ust X*. (3.15)

Equations 3.14 and 3.15 can be solved for x*:

. =)-CP_PRP Crp +prr Ust [H 4pre prr UsT SP XP ]”2 14, Gae)
28 pre (Pre Cop +prT Ust)?

and then p+ recovered from Eq. 3.15 to yield a point on the Hugoniot of the

target plate. It is not necessary that the impactor-plate Hugoniot satisfy

Eq. 3.11, or that the Hugoniot of the target plate have this or any other par-

ticular form. If the Hugoniot of the impactor plate has a form other than that of
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Eq. 3.115, the intersection on Fig. 3.9 can be determined using the appropriate
equation or by graphical or numerical methods. Conducting the experiment
described for several values of xp allows one to plot the Hugoniot of the target-
plate material.

Shock Impedance. The quantity

Z=PR|Us| (3.17)
is called the shock impedance. For acoustic waves it has the value

Z =prCB, (3.18)
and is a material constant. Since |Us| exceeds Cp by an amount that depends

on the strength of the shock, Z is not a constant, but it is still a material
property. According to Eq. 2.1164,

[["C]]=%[[—tn]], (3.19)

and we see that Z is a measure of the degree to which a material resists being
set in motion by a shock of given strength. Similarly, we have

[[—VI!=%[—tu]], (3.20)

which shows that Z is also a measure of the degree to which a material resists
shock compression. Materials for which Z is large are difficult to set in motion
or compress with a shock.

Consider the case in which an impactor plate in its reference state and
moving at velocity xp collides with a target plate at rest in its reference state.
Equation 3.19 takes the forms

x+‘xP=t|+{/ZP
x+=tl+1/ZT

for the impactor and target plates, respectively (recall that Us <0 in the
impactor plate). In writing these equations, we have used the fact that the
t; —x* state is the same for each plate. Solving these equations for £, and x*
yields

_p = ZZ1
n Zp+771
3.21)
- Zp

* =ZP+ZT)CP
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We see from these equations that generation of a large compressive stress in a
given target plate is most easily accomplished by using a high-Z impactor.
Preliminary screening for impactor candidates (or for matcrials required to
have certain shock-generation properties for other applications) is conveniently
accomplished by calculation of the impedance of various materials in the weak-
shock limit using tabulated values of density and soundspeed (or the elastic
constants required to determine the soundspeed). If we take the value of Cg
inferred from shock experiments (see Section 3.4) as a suitable measure of
soundspeed, we obtain some typical values that are shown in Table 3.1. In
general, dense metals have high impedance, but we see that lead is an excep-
tion because of its low soundspeed. Aluminum oxide and beryllium are low-
density materials that have high impedance by virtue of their high soundspeed.
Careful exploitation of variations of this sort allows optimal selection of
materials to satisfy specific application requirements.

3.7 Plane-shock Interactions

The simplest cases of shock interaction are those in which a shock propagating
into material in a uniform state encounters a boundary such as an unrestrained
surface or immovable wall, a material interface, or another shock. An interac-
tion at a boundary produces a reflected wave, whereas an interaction of two
shocks or an interaction at a material interface produces both reflected and
transmitted waves. In this section, we shall assume that the Hugoniot curves of
all materials in question are known. Some specific examples are analyzed using
the linear Us — x Hugoniot discussed in Sect. 3.4.

The basis of calculation of all shock interactions is that the longitudinal
stress component and particle velocity arc the same on both sides of the plane
of interaction. For this reason, it is appropriate to analyze the problems in the
tin - x plane. Since states produced by shock compression always lie on an
Hugoniot curve and, since these variables are continuous across planes of
interaction, the state at this plane following the interaction can be determined
by finding the intersection of the appropriate f;; — x Hugoniots.

3.7.1 Shock Interacting with a Material Interface

Consider the situation depicted in Fig. 3.10 in which a shock propagating into
material that is unstressed and at rest encounters another material that is also
unstressed and at rest. Part (a) of the figure serves simply to present the condi-
tions prior to the shock encountering the interface. Part (b) shows the trajectory
of each of the shocks and of the material interface in both the Lagrangian and
Eulerian space—time planes. The broken lines are material-particle trajectories,
i.e., lines having slope x in Eulerian coordinates, and the numbers designate
various regions in which the state of the material is uniform.
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Determination of the material response to the encounter is shown
graphically on part (c) of the figure. The curves labeled 4 and B are Hugoniots
corresponding to right-propagating shocks (shocks for which Us > 0) centered
on the initial state of each of the two materials. The incident shock has post-
transition values £ and x® corresponding to point 1 in the figure. Since the
shock is propagating in material 4, the post-transition state lies on the
Hugoniot for this material. When the incident shock encounters the interface,
stress is suddenly applied to material B, and we can expect a right-propagating
shock to form in this material. The state behind this shock must correspond to
some point 2 on the Hugoniot for material B. At this juncture two cases arise,
depending on whether the shock impedance of material B is higher or lower
than that of material 4.

Case 1, Z, <Zgp. In this case, material B reflects a shock back into material
A. This left-propagating shock (Us <0) produces a transition from state 1 to
state 2, which lies at the intersection of the Hugoniots A' and B. If these
Hugoniots are known quantitatively, the intersection points can be calculated.
The jump conditions then suffice to determine all of the other variables.
Waveforms are shown at two points in time in the left part of Fig. 3.10d. A
check against the stability criterion presented in Section 3.5 shows that all of
the shocks discussed are stable.

Before the foregoing analysis can be carried out the Hugoniot centered at
point 1 on the #; —x plane shown at the left of Fig. 3.10c must be known. This
second-shock Hugoniot can be calculated but, as noted previously, it lies very
close to the principal Hugoniot for a large range of moderate shock strengths.
Often analyses are carried out using the approximation that these Hugoniots
coincide for compressive stresses exceeding the value behind the incident
shock, and we shall do this here. (To calculate the interaction, this part of the
principal Hugoniot must be reflected about the vertical line through state 1 in
the #11 —x plane so that it applies to a left-propagating shock.) If Hugoniots 4
and B lie close together, it is clear from the figure that a gradual deviation of
the second-shock Hugoniot from the principal Hugoniot leads to only a very
small error when the latter is used as an approximation to the former.

Case 2, Z, > Zg. Analysis of this case proceeds in the same way as the
analysis of the first case, with results as indicated on the appropriate parts of
Fig. 3.10. The difference is that, because the relative position of the Hugoniots
A and B is reversed, the wave reflected from material B back into material 4
results in decompression of material 4. As we can see from the criterion of
Sect. 3.5, this shock is unstable and will spread into a smooth wave. The
smooth decompression process is isentropic, so the curve B’ is the isentrope
through state 1. Further analysis of this wave must be on the basis of the
differential equations, Eqs. 2.87 or 2.92, appropriate to smooth waves. Our
discussion of the smooth waveform must await Chap. 9. Nevertheless, if the
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Figure 3.10. Shock encountering a material interface

spreading of the decompression wave is of less interest than the state produced
as a result of the interaction, the analysis can be continued with reasonable
accuracy by proceeding as though the shock were stable. This is a very common
and useful procedure. As in the previous case, it is most accurate when
Hugoniots 4 and B lie close together.

3.7.2 Shock Interaction with a Boundary

Interaction of a shock with an unrestrained (i.e. stress-free) or an immovable
(also called fixed or rigidly restrained) boundary can be analyzed as a limiting
case of the interaction with a material interface. In this context, the shock
impedance of the “material” on the downstream side of the unrestrained bound-
ary is zero and that on the downstream side of the immovable boundary is
infinite. We consider the situation of Fig. 3.12a.
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Case 1: Interaction With an Immovable Boundary. In the case of an im-
movable boundary, the particle velocity behind the reflected shock is zero, so
the transition occurs on the Hugoniot branch connecting the state s+ to the
line x=0 (see Fig. 3.11). The state §+** behind this reflected shock is charac-
terized by x** =0 and -#;" corresponding to the intercept of the second-
shock £1; —x Hugoniot on the ordinate. As before, the remaining variables can
be determined by substituting these values into the jump conditions. The shock
reflected from an immovable surface is compressive, and hence stable for
normal materials. As was done when analyzing the interaction at an interface
considered previously, the Hugoniot centered on the state §*+ behind the
incident shock will be assumed to overlie the Hugoniot centered on the initial
state, $.

The compressive stress at points on the true second-shock Hugoniot is less
than that on the principal Hugoniot at the same value of x, so the correct value
of compressive stress at the intercept is less than that calculated using the
extension of the principal Hugoniot. A few examples of the difference in
compressive stress at the intercept of the two Hugoniots with the x=0 line
have been calculated using the methods presented in Chap. 5, and the results
are shown in Table 3.2.

Table 3.2. Comparison of principal and second-shock #; —x Hugoniots

Aluminum alloy 2024
Hugoniot state intercept stress
A -tm,GPa  x,m/s | -1, GPa® —£i7, GPa® difference, %
0.10 10.5 615 233 23.9 24
0.15 18.6 1000 432 44.6 3.1
0.20 29.5 1455 68.3 74.8 8.5
0.25 44.6 2000 104.1 119.0 12.5
0.30 66.2 2670 1542 185.5 16.9
Copper
Hugoniot state intercept stress
A -m,GPa x,m/s | -f1,GPa -], GPa difference, %
0.10 19.2 465 431 442 2.6
0.15 34.4 760 79.6 842 5.5
0.20 56.1 1120 1324 145.5 9.0
0.25 88.0 1570 209.8 241.6 132
0.30 135.7 2135 323.6 392.7 17.6

®_f isthe intercept onthe x =0 line calculated using the second-shock Hugoniot.
—t11 is the intercept onthe x = 0 line calculated by approximating the second shock
Hugoniot with the principal Hugoniot.
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Figure 3.11. Shock interaction with an immovable boundary

Case 2: Interaction With an Unrestrained Boundary. When the incident
shock encounters an unrestrained boundary, a decompression wave is reflected
back into the material, as shown Fig. 3.12b and Fig. 3.12d. The process
proceeds along the isentrope connecting the state §+ to the line —#;; =0. The
decompression isentrope can be approximated by the Hugoniot and the
interaction analyzed as though the decompression shock were stable.

When the decompression process is analyzed as though it were a
decompression shock, the particle velocity of the material adjacent to the
surface, x5, is found to be twice as great as that behind the incident shock:
x* =% /2. Use of this approximation (called the fiee-surface approximation)
facilitates determination of Hugoniot curves in experiments that do not provide
information on the particle velocity as easily as plate-impact experiments.
When the shock velocity is measured in addition to the velocity of the
unrestrained surface, one obtains a point on the Us—x Hugoniot. An example
of an experiment usually interpreted in this way is the common one in which
the shock being investigated is generated by an explosive detonated in contact
with the material.

The accuracy of the free-surface approximation is indicated by some
examples listed in Table 3.3. The value of one-half of the true free-surface
velocity given in the table exceeds the particle velocity behind the incident
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shock so the free-surface velocity approximation overestimates the true value of
the particle velocity behind the shock.

Table 3.3. Comparison of isentropic and shock decompression

Aluminum alloy 2024
Hugoniot state true 1 =0 intercept point
A -m,GPa  x,m/s A xx/2,m/s  error, %
0.10 10.5 615 -0.0019 620 0.8
0.15 18.6 1000 -0.0038 1010 1.0
0.20 29.5 1455 -0.0105 1483 1.9
0.25 44.6 2000 -0.0226 2058 29
0.30 66.2 2670 -0.0479 2790 4.5
Copper
Hugoniot state true 1 =0 intercept point
A -m,GPa  x,m/s A *s/2,m/s error, %
0.10 19.2 465 —-0.0013 468 0.6
0.15 344 760 -0.0051 770 13
0.20 56.1 1120 -0.0129 1145 22
025 88.0 1570 —-0.0305 1628 3.7
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Figure 3.12. Shock interaction with unrestrained boundary.
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3.7.3 Shock Interacting with Another Shock

Colliding Shocks. Consider the collision of two shocks illustrated in Fig. 3.13.
In the context of a linear theory, these shocks will pass through one another
without interaction. Nonlinear responses produce an interaction that modifies
each shock, but we shall still describe them as transmitted shocks, as illustrated
in Fig. 3.13c. We analyze the interaction in the f; —x plane, as indicated in
Fig. 3.13d. The state §++ behind the left-propagating shock lies on the
negative-Us branch of the Hugoniot centered on the state in which the material
is unstressed and at rest. The state S+ behind the right-propagating shock lies
on the positive-Us branch of this Hugoniot. The interaction produces shocks
propagating into the states §+ and §++, as indicated in Figs. 3.13b and 3.13c.
The state behind each of these shocks lies on the appropriate Hugoniot. Since
the stresses and particle velocities match on the two sides of the collision plane,
their values correspond to the intersection point of the #;— x Hugoniots, as
shown on Fig. 3.13d. Stress profiles at points in time before and after the
collision are shown in parts (¢) and (f) of the figure.

Note that the Hugoniots centered on s+ and §++ are second-shock
Hugoniots. As discussed previously, they can be approximated as reflections of
the principal Hugoniot or can be calculated more accurately using the equations
given in Chap. 5.

Colliding Decompression Waves. The interesting feature of the interaction of
decompression waves is that it results in a reduction in compressive stress,
often placing the material in a state of tension that is strong enough to produce
fracture.

To understand a situation in which decompression waves arise and collide,
consider the impact of two plates of finite thickness, as shown in Fig. 3.14. The
figure shows an impactor plate having thickness Lp and moving in the +X
direction at a velocity xp impacting a stationary target plate of thickness
Lt> Lp. The two plates, shown at the instant of collision, are of the same
material, are unstressed, and at the reference density of the material. An X-¢
diagram of the shock trajectories is given in part (b) of the figure and the
various shock transitions are plotted in the stress—particle-velocity plane
comprising part (c) of the figure.

The impact produces a right-propagating shock in the target plate and a
left-propagating shock in the impactor plate. As discussed previously, this state,
which we designate “state 1” is determined by the intersection of the Hugoniots
through states 0 and 0' and correspond to right- and left-propagating waves,
respectively.

Now, let us follow the left-propagating shock in the impactor. When it
encounters the unrestrained back surface of the impactor it is reflected as a right-
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Figure 3.13. Colliding shocks

propagating decompression shock. The endstate of this transition, labeled 2’
lies on the Hugoniot for right-propagating waves centered on the state 1. Since
the material behind this shock is unstressed and at rest, the shock can pass over
the impact interface without any interaction, thus extending state 2' into the
target plate.

Let us now turn our attention to the right-propagating shock introduced into
the target plate by the impact. When this wave encounters the unsupported rear
boundary of the target, a reflection occurs that is analogous to that just discussed.



3. Plane Longitudinal Shocks 59

PR P=Pr
Xp x=0
X L
<—LI — LT — ] "
(a) Configuration at impact (b) X- ¢ Diagram
A
—t 1
|
0525 | 0.2:4
! -
ip/2 i X
S
_t —————
i1 3

(¢) t;;—x Hugoniot diagram

Figure 3.14. Collision of decompression waves. The figure is drawn on the assumption
that the tension to which the material is subjected in state 3 is insufficient to cause
fracture. If the tension is sufficiently great, a fracture called a spall is produced at the
point designated S on the Xz diagram. Spallation results in detachment of a layer of
material adjacent to the back face of the target plate. When it does occur the
reverberating waves interact with the surface produced.

It leaves the material near the back face of the target plate in the state 2 (shown
on the #; —x plane) in which it is unstressed and moving in the +X direction at
the velocity xp : after this reflection, the target material is accelerated to the
initial velocity of the projectile. The next event is the collision of the two
decompression waves. Since we have chosen the target plate to be thicker than
the impactor plate, this collision will occur in the interior of the target at a
distance from its back face equal to the thickness of the impactor. Since the
material to the left of the collision plane is at rest and the material to the right
of this plane is moving to the right at the velocity xp , the material will tend to
separate. Figure 3.14b shows transmitted waves emanating from the collision
plane producing a transition from the state 2' to the same #;—x state 3 dis-
cussed previously. The Hugoniot for this transition is centered on state 2' and
has a negative slope corresponding to the negative velocity of the shock. State 3
is defined by the intersection point of these Hugoniot curves, which we see must
lic in the tensile half of the stress—particle-velocity plane at a particle velocity
of xp/2. If the tension produced by the interaction is sufficient to cause the
material to fracture, the target plate will separate at the collision plane.
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Let us suppose that the material does not fracture. Then we can carry the
analysis to later times, as indicated in the X—f plane. When the right-propa-
gating wave emanating from the collision plane encounters the back face of the
target plate it is reflected back into the material as a recompression wave re-
lieving the tension and decelerating the material near the surface to rest. At the
instant that the right-propagating wave emanating from the collision plane
encounters the impact interface the material to the right of the interface has the
velocity xp/2 and the material to the left is at rest. Since the interface cannot
resist tension, the materials separate and a recompression wave is reflected
back into the target plate. The material behind this wave is unstressed and
moving at the velocity xp . These waves collide at the same plane as experi-
enced in the previous collision, returning the material to a state of compression.

The time at which the various events discussed above occur can easily be
determined from the shock velocities (as given by the jump conditions) and the
plate thickness. One sees that, in the absence of fracture, the tensile state 3
persists at the collision plane for the amount of time required for two shock
transits of the impactor plate. The history of stress at the collision plane
X = Lp is shown in Fig. 3.14d.

The problem of tensile fracture of materials is of great technological im-
portance, and is often studied by experiments conducted as suggested by the
foregoing discussion. Fractures produced in this manner are called spall frac-
tures, and are discussed in greater detail in Chap. 12.

Contact Surfaces. In analyzing the foregoing shock interactions, we have
focused on the continuity of the particle velocity and stress fields at interaction
planes. It is important to note that other fields, such as specific volume and
specific internal energy, need not be, and generally are not, continuous at the
interaction plane. These discontinuitics, which do not propagate through the
material, are called contact surfaces. When a shock encounters a contact sur-
face, an interaction occurs that is like the one that occurs at a material inter-
face. We shall address this issue further after theories of material behavior have
been discussed.

3.8 Exercises

3.8.1. Consider a half-space of material that is unstressed and at rest. Suppose
that the stress —f;; is applied to the boundary at ¢=0 and maintained
thereafter. Show that the energy in the material at any time ¢ >0 is equal to the
work done by the applied stress in the interval from =0 to the time ¢.

3.8.2. Can a material described by Eq. 3.9 be compressed to arbitrarily large
density by a shock?
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3.8.3. What pressure, particle velocity, and compression result when a copper
plate moving at 1 km/s impacts an aluminum plate at rest? Use the Hugoniot
parameters of Table 3.1.

3.8.4. The highest velocity to which plates can be accelerated by the two-stage
light-gas guns used in shock-physics laboratories is about 10 km/s. What
pressures and compressions are produced in copper and aluminum targets
impacted by tungsten impactors moving at this speed? Tungsten (see Table 3.1)
is one of the higher-impedance materials commonly available, and is often used
as an impactor. Compare the pressure achieved when tungsten is used as an
impactor with those achieved when copper or aluminum is used.

3.8.5. Work the foregoing problem for an impact velocity of 2.5 kmy/s, about
the maximum velocity that can be achieved by a single-stage gun using chemi-
cal propellant (gun powder, hence called a powder gun).

3.8.6. Work the foregoing problem for an impact velocity of 1 km/s, about the
maximum velocity that can be achieved by a single-stage gun using compressed
air as a propellant. Such guns are called gas guns. Helium and hydrogen are
more efficient propellants, and can be used to achieve projectile velocities of
about 1.5 km/s. When these gases are used, the gun is usually called a (single-
stage) light-gas gun.

3.8.7. In some experiments, it is necessary to affix a very thin mirror or
metallic electrode to an otherwise unrestrained surface of a sample. Analyze
(qualitatively) the response of the thin layer when a shock that has propagated
through the sample impinges on it and reverberates within it. Consider both the
case of a layer of lower and of higher shock impedance than the sample. Is an
aluminum or a gold mirror or electrode to be preferred for use on an aluminum
oxide sample?

3.8.8. In some experiments the stress history at a plane within a sample is
measured by use of the piezoresistive effect exhibited by a manganin foil when
it is compressed by a passing wave. In practice, a gauge is made by embedding
the manganin foil in a thin polymeric insulator. This gauge is then placed
between two plates of the sample material. Analyze (qualitatively) the response
of the thin gauge as a shock propagates through the sample. It is sufficient to
consider only the low-impedance polymeric insulator, as the very thin man-
ganin foil can be shown to produce a negligible effect on the shock process.

3.8.9. When a shock is introduced into a multilayer plate assembly in which a
target comprising a thin low-impedance plate backed by a thick high-
impedance plate is impacted by a thick high-impedance impactor plate a
sequence of shock-compressed states is produced in the low-impedance plate.
Draw X-t and p-x diagrams illustrating the first few wave interactions and
states produced.
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3.8.10. When a shock is introduced into a multilayer plate assembly in which a
target comprising a thin high-impedance plate backed by a thick low-
impedance plate is impacted by a thick low-impedance impactor plate a
sequence of shock-compressed states is produced in the low-impedance plate.
Draw X—t and p —x diagrams illustrating the first few wave interactions and
states produced.

3.8.11. The Hugoniots of several materials (including. Al alloy 2024, Cu, and
U-3wt% Mo alloy) have been determined with high accuracy. These materials
are used as standards from which Hugoniots of other materials can be measured
by comparison. In the experiment, a shock (usually produced by an explosive
plane-wave generator) is passed through a plate of one of the standard materials
and into a contacting plate of the material for which the Hugoniot is to be
determined. Show how, by measuring only lengths and shock transit times, a
point on the Hugoniot of the sample can be determined.

3.8.12. How can a point on the Hugoniot of a material be measured from an
experiment in which an explosively generated shock is propagated through a
plate of the material and allowed to reflect from its unrestrained back face?

3.8.13. Consider the effect of sudden application of a constant, uniform
pressure to the surface of a halfspace. Does the work done on the boundary
equal the sum of the kinetic and internal energy in the material? How do the
magnitudes of these two forms of energy compare?



CHAPTER 4

Material Response I: Principles

4.1 General Remarks About Constitutive Equations

The equations of balance of mass, momentum, and energy that were presented
in Chap. 2 apply to all materials that we shall consider in this book.” Since they
apply equally to air, water, and steel, for example, they are obviously insuffi-
cient for complete determination of the response of any given one of these
materials. We need to supplement them with a mathematical description of the
differentiating characteristics of specific materials.

The materials with which we come in contact every day exhibit widely var-
ied responses. We encounter gases, liquids, and elastic solids. Inelastic solids
are also familiar. In some cases a ductile response is observed, as with soft met-
als, whereas brittle responses are observed in materials such as glass, rocks, and
ceramics. Porous materials such as powdered-metal compacts, granular materi-
als such as soils, and composite materials such as fiber-reinforced polymers are
common. In some cases materials respond essentially instantaneously to
imposed stimuli, as in elasticity, whereas evolutionary responses such as visco-
plasticity and chemical reactions proceeding at finite rates are observed in other
materials or in the same materials subjected to other stimuli. Shock processes
can produce very large compressions and high temperatures, and do so at the
highest attainable rates. This broad range of thermodynamic state and defor-
mation rate necessitates development and use of comprehensive models of
material response.

Formulation of equations describing material behavior must begin with se-
lection of a set of variables through which this behavior can be expressed. This
is an intuitive step, but one based upon experience and experimental observa-
tion. We have learned, for example, that the behavior of an elastic body can be
described in terms of equations relating the force imposed on it to the deforma-

* When additional physical phenomena such as electrical interactions are to be consid-
ered, or when it is necessary to capture effects of structural complexity present in mate-
rials such as fiber-reinforced composites, the equations of Chap. 2 must be generalized.
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tion produced. Specifically, we express the forces in terms of a stress tensor and
the deformations in terms of a strain tensor. Similarly, gases are characterized
by a relation that allows determination of pressure from specific volume and
temperature. Alternatively, we can begin with an equation relating the internal
energy to the deformation and entropy and then use thermodynamic principles
to determine the stress and temperature relations. When the response of a
material depends upon the rate at which it is deformed, it is necessary to devise
an appropriate measure of this rate and to include it in the constitutive descrip-
tion of the material. As we shall sce, there are many additional possibilities.

We shall call the set of variables required to describe the behavior of a ma-
terial, or class of materials, the constitutive variables of the material. Constitu-
tive variables such as stress, strain, and rates and gradients of these quantities
are usually expressed in terms of their components in some coordinate system.
To ensure that these variables are expressed in a form that is not essentially tied
to a specific coordinate system, we formulate them as tensors. When, as in the
case of strain tensors, there are various ways of expressing the concept, each is
acceptable if it can be uniquely related to the others.

The mathematical description of material behavior is in the form of consti-
tutive equations, which are expressions of the relationships among the consti-
tutive variables. Except for the least comprehensive theories, several constitu-
tive equations are required to describe a material. Truesdell’s Principle of
Equipresence holds that a dependent variable present in one constitutive equa-
tion for a given material must be assumed to be present in all of the others,
except when this is specifically precluded by thermodynamic or invariance
principles.

The purpose of this chapter is to provide a sketch of the principles underly-
ing development of constitutive equations and to initiate a discussion of thermo-
elastic materials. As with our previous discussion of mechanical principles, we
give only a brief exposition of the subject matter, referring to appropriate texts
and treatises [72,98,102,103] for fuller accounts.

Constitutive equations can be inferred (in principle) directly from experi-
mental measurements or by fitting assumed mathematical forms to measure-
ments. Similarly, they can be inferred from the results of calculations of atomic
or molecular interactions. Direct experimental measurement has proven useful
in determining the equation of state of an ideal gas and descriptions of a few
other simple substances, but is an impractical method of dealing with materials
exhibiting complicated responses. It is also of limited use in the range of stress
and rate of deformation of interest in shock-wave studies because the extent of a
practical investigation and the capabilities of available instrumentation are too
limited. When, as is often the case, the response of a material to sudden appli-
cation of large forces is not known, experimental methods of shock physics
provide a means for studying this response and the results of shock measure-
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ments can be used to establish values for material coefficients occurring in em-
pirical constitutive equations. It is important to note that arbitrary functions fit
to experimental data may not lead to properly invariant equations. It is neces-
sary to constrain the form of the equations before attempting to match them to
measurements. The foregoing comments are not intended to suggest that ex-
perimental investigations are unimportant. Indeed, they form the basis of the
subject because they reveal phenomena that require explanation, indicate the
path to be followed in developing a theory of the observed responses, quantify
material parameters, and provide evidence as to the adequacy of the theory.

This is the first of several chapters devoted to constitutive equations. In it
we address general principles; the remaining chapters in this group describe
several important classes of materials.

4.2 Invariance Principles

Establishment of invariance principles governing constitutive equations is
motivated by the need to rationalize the making of arbitrary choices. When
there is no rational way to choose among alternatives, it is necessary to make
the choice arbitrarily but to insist that the resulting theory be invariant to the
choice made. Consider, for example, the choice of the spatial coordinate system
in which a theory of material response is expressed. How is this frame to be
selected? The space has no intrinsic features that help us select the origin of the
frame, its orientation, its right- or left-handedness, or its scale.* Accordingly,
we select a spatial coordinate frame arbitrarily, but require that constitutive
equations describing the physical behavior of a material be invariant to this
choice. We shall sece how this and other requirements are implemented.

4.2.1 Transformation of Spatial Coordinates

Description of a physical event is most conveniently accomplished using a
frame of reference. To explain where something is occurring, in which direc-
tion and how fast an object is moving, or where and in which direction a force
is applied, for example, we use a frame of reference. If two people observe an
event, each may describe it in terms of any convenient frame of reference. If the
relationship between the two reference frames is known it is possible to recon-
cile the two reports since the event itself was completely independent of the
reference frames used by the observers. Similarly, theories of material response
are cast in terms of equations that involve a reference frame. Since the behavior
of the material cannot depend upon the choice of a reference frame used to
describe it the constitutive equations must be invariant to this choice.

* The equations of motion involve a preferred coordinate system called an inertial
Jframe, but this concept does not play a role in developing constitutive equations.
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To ensure that a theory of material response is independent of the coordi-
nates used it must be expressed in terms of variables that transform as tensors
under change of coordinates. It is sufficient to use Cartesian tensors, and that is
the procedure followed in this book.

Let us consider two spatial coordinate frames in which the points are desig-
nated by the coordinates x; and x7, for i=1, 2, 3. These coordinates are
related by the equation

x; =0y O xj+ai (D), 4.1

where Q(¢) is the orthogonal transformation required to bring the orientation
and handedness of the frame x into coincidence with that of the frame x* and
c(#) is a vector representing the translation required to bring the origins of
these frames into coincidence. As an orthogonal transformation, Q(¢) has the
property Q! =QT (or, in component notation, Q;;! =0 = Qi ). We shall use
an asterisk to designate quantities referred to the frame x*. Invariance also
requires that the time be changed so that it is the same for the two observers.
This will not present a problem for the constitutive equations that we shall
consider because they involve time intervals but not the time itself. One must
also consider the length scale of the two coordinate frames. This is taken into
account when we choose the units in which coefficients entering the constitu-
tive equations are expressed and need not be considered in connection with the
coordinate transformation.

Substituting Eq. 4.1 into Eq. 2.4, gives the transformed representation of F,
Fi=0iF, “.2)
since Q(#) and c(¢) are independent of X. Similarly, the material derivative
of Eq. 4.11is
i =0y xj +0y % +6i.
Differentiation of this equation with respect to x*, and use of the relation
0xi/0x} = Q5! obtained from Eq. 4.1, gives the transformed representation of
the velocity gradient, 1:
. -1 -1
i = Oie Qg+ Que ht Q. 43)

Using these results leads to transformation laws for the symmetric and anti-
symmetric parts, d and w, respectively, of the velocity gradient tensor 1 and of
the Eulerian strain tensor e:

d*=Qd6, w*=Qw6+Q6, e*=Qe6. “4.4)

The quantities F, e, and d transform as tensors under a change of frame and
can play a role in constitutive relations. The particle velocity, velocity gradient,
and spin do not transform as tensors and are excluded from constitutive equa-
tions.
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Lagrangian quantities such as C and E are unchanged by the change of
spatial frame ( C* = C, etc.) and can appear among the constitutive variables of
a theory.

As can be seen from Eq. 2.53 or directly by projecting the stress compo-
nents from the frame x to the frame x*, the stress transforms as a second-order
tensor under a change of frame;

*=QtQ. 4.5)

In some constitutive equations an expression for material stress rate is
needed. Differentiation of Eq. 4.5 gives

*=QtQ'+QiQ' +QtQ7, 4.6)

so, as is well known, t does not transform as a tensor under a change of frame.
To obtain a frame-indifferent time derivative of t, it is necessary to calculate the
rate of change in a coordinate frame that rotates with the material. There are
various ways to do this; the appropriate choice is the one that lends itself most
naturally to capture of the physical processes considered important, Differen-
tiation of the elastic stress relation (see Chap. 6) leads to an equation that
relates Dafalias’ corodeformational rate of t to the deformation rate d through
a fourth-order tensor that depends upon F':

o
bij = Sijer du %))
where
?ij = iif - ljmtim - lim tmj + (tr d) fij . (48)

A routine calculation based upon Eqs. 4.4, and 4.6 shows that t transforms as
a second-order tensor under a change of frame. There are several other invari-
ant strain rates in current use, and the choice of which one is the most appro-
priate in specific applications is often a matter of controversy.

4.2.2 Principle of Objectivity

The Principle of Objectivity or Material Frame Indifference states that consti-
tutive equations must be invariant under a change of spatial frame, i.c., if a
constitutive equation is satisfied for a motion x =x(X, £) it must also be satis-
fied for the motion x* =%* (X, ) related to the first motion by Eq. 4.1.

Consider, for example, a scalar constitutive equation such as the specific
internal energy function £ =¢€(F,n), where 1 is a scalar, When evaluated for
quantities expressed in the transformed frame x* we have £* =£(F* n*). The
invariance requirement is that € =¢* so the internal energy function must
satisfy the relation
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e(F,m=sF" 1. 4.9)

We have seen that F*=QF and, since n is a scalar, =1+, Eq. 4.9 takes the
form

e(F,m)=€(QF,n). 4.10)

To determine the form the function &(F, ) must take to ensure that Eq. 4.10
is satisfied for all values of the deformation gradient and specific entropy and
for all orthogonal matrices Q, we note that it can be written as

e(F,n)=e(QRU, ).

Since this equation must hold for all orthogonal matrices Q it must hold, in
particular, for Q=R". Therefore, all frame-indifferent functions & (F,n)
must be of the form

e=T(U,M). 4.11)

To complete the proof that the internal energy function must be of the form of
Eq. 4.11 we simply note that U=U" and n=n* so that all functions of this
form are invariant to the choice of the spatial frame. Since C=U? and
E=1(U?-1I), the function € can be replaced by a function of the Cauchy-
Green deformation tensor, C, or the Lagrangian strain tensor, E. The form

e=£(E,m) 4.12)
of the specific internal energy function often proves most convenient.

Now let us consider the stress relation t = t(F) . Since the stress transforms
as a second-order tensor we have

5i=QuQjitu, 4.13)

but t* is obtained by evaluating the stress relation t for the transformed de-
formation gradient F*= QF . Accordingly, Eq. 4.13 takes the form

i (QF) =0 Qji tu (F) . (4.14)

Although an objective form of #;(F) can be derived, we shall employ thermo-
dynamic principles to obtain t(F,n) from £(F,n) in a way that will be seen
to satisfy Eq. 4.14 automatically.

4.2.3 Material Symmetry

A final type of invariance with which we shall be concerned is invariance of
material response to changes in the reference configuration of the body at the
material point in question. We know that changes in reference density invaria-
bly produce a change in response, so we shall restrict our attention to volume-
preserving (unimodular) changes of the reference configuration.



4. Material Response I: Principles 69

Fluids can be stirred about quite arbitrarily without affecting their subse-
quent behavior, so their constitutive equations must be invariant to all volume-
preserving changes in the reference configuration. Indeed, this requirement can
serve as the definition of a fluid.

The reference configuration of solids cannot be changed this much without
their response being altered, but their response is usually invariant to some
rotations. An unstressed solid at a specified reference temperature is said to be
in its natural configuration and it is this configuration in which its symmetry is
assessed. In particular, perfect, unstressed crystals are observed to possess sym-
metries of response that allow them to be rotated through certain angles about
certain axes without causing any change in either their microscopic configura-
tion or macroscopic response. Although it is only the macroscopic response
with which we shall be concerned, it is useful to realize that observed symme-
tries in this response arise from microscopic causes, and that the symmetry of
continuum-mechanical response of materials is more often inferred from
knowledge of microscopic structure than from direct mechanical measurement.

Let us consider the effect of changing the reference coordinates upon vari-
ous of the measures of stress, strain, etc. that we expect will enter constitutive
descriptions. Suppose that

xi=xi (X,

represents the motion of a body relative to a reference configuration ® (),
Consider a different reference configuration ®(® in which the particle posi-
tions ¥ are related to the original positions by the invertible function ¢ :

X1=091(Y). 4.15)

The deformation gradient at X, i.e. relative to ® (1) is given by the usual equa-
tion

6. %))

Fiy 5%,

The deformation gradient at the same material point, undergoing the same
motion, is

ot 0%i(@ (V). 1) dex(Y)
i] =
0Xx oY,

when related to ®,(® . Writing

ook (Y)
Hyy=—""">~
K oYs
we have
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Fy=FHgs . 4.16)

Scalars such as p, v, and £, and spatial variables such as ¢, d, and t are in-
variant to changes in the reference configuration. Material variables such as C,
E, and T transform as tensors under Eq. 4.15. Since only orthogonal transfor-
mations H (i.e. rotations and reflections) arise in discussion of solids, we re-
strict ourselves to that case. For orthogonal transformations H, we have
H'=HT and

T -1 T -1
C*=F'F*'=HFFH=HCH

* - -1 ~1 -1
E'=1(C"-1)=}(HCH-HIH)=HEH (4.17)
1—1 -T = A e e -1
T*=5;F*t*F*=—p-F*tF*=—§HFtFH=HTH.

Consider the implications of the foregoing for a scalar-valued constitutive
equation that depends upon a tensor variable: & =&(E). The thermomechanical
response of a fluid is invariant to all volume-preserving transformations of the
reference configuration. Since &€ is a scalar and the only volume-preserving
functions of E are those that depend only upon the specific volume itself, the
constitutive equation for a fluid becomes € =£(v) . A solid can be defined as a
material for which the constitutive equations are invariant to some or all or-
thogonal transformations of an unstressed reference configuration. Since € isa
scalar, we must have

é(E):é(E*):é(ﬁE H), (4.18)

where H ranges over all of the orthogonal transformations for which Eq. 4.18 is
satisfied for the material of interest. A group of transformations is a set that
includes HOH®) if H® and H® are members, H™! is a member if H is,
and the identity is a member. It can be shown that the set of transformations to
which a constitutive equation is invariant form a group, called the isotropy
group, so results of group theory are available to help solve Eq. 4.18.

Many analyses arising in connection with shock phenomena involve iso-
tropic materials, those possessing no distinguished axes in the unstressed state.
The form of constitutive equations that conform to this symmetry is particnlarly
simple. It is easy to show that the functions

Ig = Exx
1s=1{(Exx)? ~Ew Eu ] 4.19)

Il g =detE
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are invariant to all orthogonal transformations of E, so
e=e(lg, g, Illg) 4.20)

is invariant to these transformations and, using the theory of isotropic functions
[102, Chap. B}, can be shown to serve as a scalar constitutive function of E for
isotropic materials.

Similar results have been obtained for invariance under subsets of the or-
thogonal group that are appropriate to description of crystals of various classes,
but results of this generality are not usually appropriate for applications of
shock physics involving monocrystals. Among these applications is the use of
the piezoelectric effect exhibited by crystalline quartz plates for measurement of
stress-wave histories. Usually, the requirement is for a very accurate description
of the thermomechanical response of the material that is valid for strains that
are small (usually less than 5%), but large enough that one must take some
account of nonlinear behavior to achieve the required accuracy. In this case, the
internal energy density function is taken to be a polynomial in E and n. The
material symmetry imposes constraints on the coefficient tensors of this poly-
nomial. The forms of these tensors for the various crystal classes have been
tabulated [98] and values of the coefficients measured for many materials.

Some problems involve shock propagation in laminated or fiber-reinforced
materials that possess transversely isotropic symmetry, that in which distinct
response is observed in one direction with identical responses being observed in
all perpendicular directions.

4.3 Thermodynamic Principles

Thermodynamic considerations arise in connection with shock physics in two
ways:

i) Thermodynamic principles impose restrictions upon constitutive equa-
tions, and thus help in formulating theories of the thermomechanical re-
sponse of matter.

ii) Thermomechanical theories are invoked to calculate changes in tem-
perature, phase composition, etc. produced in materials by shock com-
pression or other processes.

The analysis of the present section is carried out in the spirit of the first appli-
cation, above, but is applicable to solution of the other problem as well. The
discussion follows that of Coleman and Mizel [25], Coleman and Noll [26], and
Coleman and Gurtin [24].

Thermodynamic Processes. We have introduced the function x=%(X,?)
giving the motion of points of the body, the symmetric stress tensor t by which
forces on surface clements of the body are characterized, and the body-force
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vector f describing extrinsic forces applied to interior points of the body. We
also introduced the thermodynamic concepts of specific internal energy, €,
heat flux, g, and an extrinsic heat supply, ». To complete a minimal thermo-
dynamic description, we must adjoin the specific entropy (entropy per unit
mass), 1, and the local absolute femperature, 6> 0 to this list. Any choice of
the functions (X, ), t(X,n, f(X,1), eX,n, qX,n, rX,n, nX,?),
and 6(X,t)>0 is said to comprise a thermodynamic process for the material
in question if these functions satisfy the equations of balance of linear momen-
tum and energy.

Our study of restrictions that thermodynamic principles impose upon the
form of constitutive equations begins with the Second Law of Thermodynamics.
This law differs from those far discussed in that it takes the form of an inequal-
ity, the Clausius—Duhem inequality:

a pndeJ. pidv—J‘ lq,-n,-ds, 4.21)
at J 20 0

where p(r) is a material volume and s(¢) is the surface of p(r) . The left
member of this inequality is the rate at which entropy increases in the body.
The terms of the right member represent the rate at which entropy is introduced
into the body by deposition of energy from extrinsic sources and by conduction
of heat through the boundary, respectively. The inequality holds that the rate of
increase of entropy is no less than that increase attributable to energy deposi-
tion and heat conduction into the body. Normally, the rate of increase will be
strictly greater than the sum of these source terms as a consequence of internal
dissipation in the material.

When the fields appearing in Eq. 4.21 are smooth enough (and when the
equation is required to hold for all parts of p(¢t) as well as p () itself), we can
proceed as in Sect. 2.4.1 to express this inequality in the local form

. i-l.i(ﬂ} _ (4.22)

Using the energy-balance equation 2.83, we can write this inequality in the
form
0> ten-L i Fy Fyr——gi0, 4.23)
<9 n pG” i Ly p92q' Js .
which has the virtue that the extrinsic heat supply rate has been eliminated,
leaving only quantities related to the material itself.

When the equations of balance of momentum and energy are satisfied by a
thermodynamic process, the latter is said to be admissible. It can be shown that
any set of functions x(X, 1), t(X, 1), X, 0, n(X,, and 6(X,1)>0 can
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be made to form an admissible thermodynamic process by a suitable choice of
f(X,?), and r(X, t). From the theoretical point of view, it is not important
that some choices of f and » may be difficult to produce experimentally. The
essential principle introduced by Coleman and coworkers in the papers cited is
that material response functions are to be restricted so that the Clausius~
Duhem inequality is satisfied for every admissible thermodynamic process.

For future developments it will be important that the values of the functions
defining a thermodynamic process, and various of their derivatives, can be
chosen arbitrarily and independently of one another at any value of X and 1.

4.3.1 Thermoelastic Materials

In this section we begin our investigation of the process by which constitutive
equations are developed. This first case, the simple thermoelastic material,
provides a convenient introduction to the method.

Let us assume that a material at a point X is characterized by the response
functions

e=8(F,ng), 0=0(F,ng), t=t(F,n,g), and q=qF,n,g), (424

where g is the temperature gradient having components g; =0; . Since these
response functions do not depend upon the rate at which the deformation or
entropy changes, the theory describes states of equilibrium and might better be
called thermostatics than thermodynamics. Since materials exhibiting rate-
independent responses are always in thermodynamic equilibrium, the theory
under discussion can be applied to analysis of dynamic processes involving
them.

If the material and the reference configuration are such that Eqs. 4.24 are
independent of X, the material is said to be homogeneous. If no such configu-
ration exists, the material is inhomogeneous. Since all of the discussion of
constitutive equations is carried out for a single material point, the question of
homogeneity does not enter directly, and we shall omit writing the variable X in
the equations to follow. If necessary, it can be inserted in the equations when
they are applied.

If we substitute Eqs. 4.24 into the inequality 4.23 we obtain

1 0% . 1| 88 15 &g 1 1 0¢ .
0 2|2~ =~ =z~ hity | Fi igi i .

|:e an l]n+é|:aFd ptIJFJ]]FL]+p62qg+eag1g (425)
As noted previously, the values of all of the arguments and their derivatives can
be chosen arbitrarily and independently at any point. If we choose F=0,
g =0, and n=a (where a is not 0, but otherwise arbitrary) we conclude that
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ey 0e(F,n,
O(F.n =208 (4.26)
Similarly, we can show that
0e(F,n8 15 -
—W—U_ - 3 FJ] tJ’ (F9 n, g) (427)
and
GEE,nE) _, @28
8g,‘

Finally, we are left with the inequality
gi(F,n,8) gi <0. 4.29)

The results of this section can be summarized by saying that, under the pre-
sent assumptions, particularly those of Eqs. 4.24, we find that

i) From Eq 4.28 we see that the specific internal energy function is inde-
pendent of the temperature gradient:

e=E(F,n). (4.30)
Equations 4.26 and 4.27 show that this function is an equation of state.
We had previously called attention to Truesdell’s Principle of Equi-
presence, which holds that all of the constitutive equations should de-
pend on the same set of independent variables except as they may be
excluded by invariance or thermodynamic requirements. The exclusion
of q from the internal energy density equation of state is an example of
such a case.

ii) The temperature-response function is obtained from this equation of
state through the relation

8=0(F,n)=08(F,n)/on, 4.3D)
iii) The stress-response function is obtained from Eq. 4.27, which we write
in the form
. oe(F,m) _ p
ti=ty F,n=pFy ———=—FsTy. 4.32
i =1 ( Tl)PlJaFjJ ka’JJ ( )

iv) The assertion of the inequality 4.29 is that heat flows from regions of
high temperature to those of lower temperature. In the present context,
this inequality is to be interpreted as a requirement imposed upon the
constitutive equation q=q(F,n, g). In the case of Fourier’s law of
heat conduction, g; =~kj; g;, for example, the requirement is simply
that k, the thermal conductivity tensor, be positive-semidefinite.
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When Eqs. 4.31-4.32 are substituted into the energy equation 2.83, we ob-

tain

T |

n —g—p—equ, (4.33)
showing that entropy increases solely as a result of energy deposition and heat
conduction into the body. The deformation process does not enter this entropy-
production equation because materials described by the constitutive equations
under consideration are non-dissipative. It is important to note that the forego-
ing equation was developed under smoothness assumptions that omit shocks
from consideration. We shall see that, even for this material the specific en-
tropy increases when a shock passes through a material.

Differentiation of the relation € =€(F,n) gives

&= 68(F9 T]) Fﬂ+aS(F9 n)

oFu on (4.3
which can be written in the form
| . . 1 .
S‘—=b—tijFiJ Ej+9n=b—tijd,~,-+en, (4.35)

where the second of these equations is obtained using Eq. 2.18 and the symme-
try of t. Equation 4.35, which can be written in several equivalent forms, is
called the First Law of Thermodynamics.

The foregoing expressions may be familiar from other discussions, but the
particular way in which they were derived by Coleman and his colleagues lends
itself to generalization to dissipative materials and materials for which the
response functions are altered as the material is deformed.

The function & of equation 4.30 is called a thermodynamic potential, since
other response functions are derived from it by differentiation. Before these
results can be applied to specific materials they must be further restricted to
ensure satisfaction of the requirements for coordinate invariance and to
reflect the symmetry of the material. The three other classical thermodynamic
potentials, the Helmholtz free energy function, the enthalpy function, and
Gibbs’ function, are useful when independent variables (F,0), (T,n), or
(T, 0), respectively, are preferred to (F, ). The theory of thermoelastic fluids
and solids is further developed in Chaps. 5 and 6, respectively.

If the foregoing equations are to be acceptable as constitutive descriptions
they must satisfy the principle of objectivity, as outlined in Sect. 4.2.2. This
requires that
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e(F,m=e(QF,n)
8(F,)=0(QF, 1) 4.36)
Q(F.m,2)=T(QF. 1, Q)
QE(F,n, X)Q=EQF.n).

In order that Eq. 4.36, be satisfied F must appear in an invariant combination
such as Cu = Fir Fiu or, as we shall find convenient, Eu =%[CJJ -8w}.
Accordingly, we write

e(F,n)=¢(E,n). 4.37)

The response function for 6 then follows in appropriate invariant form from
Eq. 4.31. Substitution of Eq. 4.37 into Eq. 4.32 produces the result

(B o By g PEET)
tij = bij (F, T]) =p Fy F]J 3EL (438)

also an objective form. By comparison of this result with Eq. 2.64 we see that
the second Piola—Kirchhoff stress tensor is given by the constitutive relation

Tis =pr —5 (4.39)
Finally, the heat-flux equation takes the invariant form
A -1
qi=Fu Qs (E,n, Fg), (4.40)

where it is important that the Lagrangian heat flux vector Q; not be confused
with the orthogonal transformation Qj; .

A variety of “rate effects,” of which Newtonian viscosity is the simplest ex-
ample, are observed during deformation processes. The theory just outlined
captures the equilibrium response of many materials of practical interest, but
cannot explain viscosity or other effects of the rafe at which deformation oc-
curs. Because of the rapid deformation associated with shock loading, one may
be led to consider theories in which the constitutive functions depend on F as
well as F, n, and g. This has been done by Coleman and Noll [25] as an exten-
sion of the present theory and leads to theories of viscosity.

4.3.2 Thermoelastic Materials with Internal State Variables

In the foregoing discussion we have taken the view that the only changes that
occur in materials are deformation and change of temperature or entropy. This
view does not recognize phenomena such as nonequilibrium excitation of
molecular vibrations, chemical reaction, changes of metallurgical configuration
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such as dislocation density, or mesoscale changes such as cavitation or micro-
cracking. Description of these effects is often presented in terms of internal
state variables representing the degree of advancement of a chemical reaction,
dislocation density, volume fraction of the material that is occupied by micro-
voids, etc. These variables are determined by evolutionary equations (usually
first-order ordinary differential equations) expressing the kinetics of chemical
reactions, rates of dislocation multiplication, etc. It is an important philosophi-
cal point that responses of materials in which these changes are occurring can
be regarded as consequences of the history of deformation, temperature, etc. at
points of the material or, as dependent only on the current state of the material,
but with the description of this state involving additional variables. In the first
case it is necessary to keep track of the history responsible for the responses
obscrved and to have equations describing the effect of this history on the
responses. In the second case, it is necessary to identify the additional variables
required to adequately describe the current state of the material and to have
equations describing the evolution of these variables. Traditional elastoplastic-
ity theories are an example of the first case in which the history is taken into
account. In this volume we shall discuss theories of viscoplasticity and fracture
that fall into the second category in which infernal state variables are used to
describe the current state of the material and the response of the material in this
state to subsequent stimuli. An advantage of the internal state variable theory is
that these variables are usually chosen to represent specific changes of features
of the material such as chemical composition, dislocation density, or porosity
that are understood independently of the internal state variable theory being
developed and can be measured in an experiment.

In this section we show how Coleman and Gurtin [24] extended the pre-
ceding thermodynamic analysis to inciude evolutionary processes described by
internal state variables.

Let us consider response functions of the form

e=eF,nga,..an),

0=0(F,nga,...an), (4.41)
t =E(F> n g a, ..., av),
and
q =E(F’ n5 gs al, ey aN)9
where ay,...,ay are N internal state variables that evolve in accordance with
the N equations

dl =.ﬁ (Fa n’gs a, ..., aN)"",dN =fN (F, n:g: ag, ..., aN)' (442)
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When these expressions are substituted into the Clausius—Duhem inequality
4.23 it takes the form

08 =|. 08 1. 2.
> v -—t; Fj | Fi
0_[611 9}n+[ 5 pt,FJ,}FJ

1 _ 0t , N og
+—qigit+t—&i + .
pe2 & agl & Zu:l 60(1 f“

Reasoning similar to that used previously produces the familiar expressions

(4.43)

o€
Lj=p Fi e
B (4.44)
§=28
n

for the stress and temperature responses and we find that 6€/0gi =0, i.e., the
specific internal energy cannot depend on the temperature gradient. In the
present case the stress and temperature responses depend not only upon the
deformation and entropy but also upon the internal state variables (but not on
the temperature gradient). The internal energy response function and the evo-
lutionary equations must be so restricted as to satisfy the inequality

1 N eE
Oz—p_Gqugi+2 6aa fu,. (445)

a=1

Although we shall not pursue this theory further, much more can be done.
In particular, Coleman and Gurtin develop equations analogous to those given
above but employing different sets of independent variables. They also investi-
gate equilibrium states to which thermodynamic processes evolve and prove
stability theorems.

4.4 Exercises
4.4.1. Show that Jaumann’s strain rate { , defined by
v .
ti =ty —tul e ~ti e,
transforms as a second-order tensor under a change of the spatial frame.

4.4.2. Show that t , given by Eq. 4.8, transforms as a second-order tensor
under a change of the spatial frame.

4.4.3. Consider an elastic material that has a constitutive equation of the form
T1r =Cuxr Exr . What conditions must be satisfied by the elastic moduli Crxz
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in order that the constitutive equation be invariant under the orthogonal trans-
formation Hj; of the reference coordinate frame?

4.44. Produce functions x(X,7), n(X,n, 6(X,n g(X,r such that
FX,0), n(X,0, 0(X,1), and g(X,#) attain arbitrary values when X =X"
and ¢ =" . Note that polynomials suffice.

4.4.5. For an inviscid thermoelastic fluid we have the equations of state
g=e(v,n,8), 0=06(v,ng), 4=p(.n8% qi=qi(,ng.

Determine the requirements imposed upon these functions in order that the
Clausius—-Duhem inequality be satisfied for every admissible thermodynamic
processes.

4.4.6. In Chap. 11 we develop a theory of compaction of a porous material.
The parent solid of which this material is made has the equation of state
e =&s(vs, ), where v; is its specific volume and m is its specific entropy. The
porous material is made by introducing voids into the parent solid so that its
specific volume is v > v, . We define the porosity as o =v/vs, which we intro-
duce into the theory as an internal state variable. The equation of state of the
porous material is taken to be e(v,n,a)=gs(v/a,m) and the compaction
process is governed by the evolutionary equation o = [t — cteq (v, N)}/ T, Where
Qeq (v, ) £ o0 is the equilibrium porosity at the state v, ) and t is a character-
istic compaction time for the material. We assume that the material is a non-
conductor of heat (i.e., q=0). Show that the Clausius—Duhem inequality is
satisfied if we require that T be positive.



CHAPTER 5

Material Response I1:
Inviscid Compressible Fluids

The fluids considered in this chapter are compressible materials that are inca-
pable of supporting shear stress. In addition to the materials usually identified
as fluids, theories of fluid behavior are applied to solids subjected to strong
shock compression because solids behave in much the same way as fluids under
these conditions. The reason for this is that, whereas a confined solid can
support an arbitrarily large pressure, its resistance to shear is limited to modest
values characterized by properties called shear strength, yield strength, etc. We
see from Eq. 2.58 or 2.63 that the normal stress is expressible as the sum of
pressure and shear terms. Because the shear stress is limited, the normal stress
and the pressure approach equality when the applied stress is very large. When
the relatively small difference is neglected, the solid is effectively a fluid and its
response to strong shock compression is often modeled as though it were a
fluid. The fluid model of material response is completely inappropriate for
solids at low stresses (where the material is usually modeled as an elastic solid)
or even at moderately higher stresses (where the material is often modeled as
an elastic—plastic solid).

The physical mechanisms that limit the ability of solids to support large
shear stresses need not be described in detail. The general concept is that, when
the shear stress on a plane in the body exceeds the maximum value that the
material can resist, some slip mechanism is activated and the deformation,
which began in the continuous manner suggested by Fig. 5.1a takes the discon-
tinuous form suggested by Fig. 5.1b. The deformed configuration in Fig. 5.1b is
seen to have changed its overall shape as though sheared, but closer examination

(2) (®

Figure 5.1. Schematic iltustration of the discontinuous slip mechanism underlying the
deformation that relieves shear stress and leads to a stress field in the solid that is
approximately spherical, i.e. a pressure such as would be experienced in a fluid.
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shows that all of the shear appears in the form of slip on discrete planes. If the
shear stress is completely relieved by the slip process, the individual blocks of
material thus formed are not sheared but are compressed. The scale of the
individual blocks is sufficiently small that they need not be resolved in a
continuum model. It is possible, of course, that relief of the shear stress is
incomplete and the body is left in a compressed state involving some shear.
Although the relatively small shear stress that exists in highly compressed
matter can exert a disproportionate influence on some wave-propagation phe-
nomena, it produces a negligible thermodynamic effect.

5.1 Thermodynamic Properties of Fluids

In Section 4.2.3 we noted that the response functions of a fluid should be re-
stricted to forms that are invariant to all volume-preserving changes in the
reference configuration. This means that ¢(F,n) depends on F only in the
form e(detF, n) or, equivalently, (v, n) . The stress relation is

ty = pFy de(v,m) _ p Oe(v,n) Fy O(detF)
OF ;s PR v 0F

de(v,m) . 2 _Oe(v,m)
=__5_v_n_FUFJj=__l§U,

so we see that the stress tensor is spherical, and

__%svwm)
= 6.1

the familiar pressure equation of state for a fluid. The temperature equation of
state is, as before,

)Y

o (5.2)

We see from these equations that the specific internal energy equation of
state, € =¢(v,mn), serves as a potential for p(v,n) and 6(v,n) in the sense
that the latter functions are obtained from the former by differentiation. Three
other important thermodynamic potentials are the Helmholtz Free Energy
Function

W, 0)=¢-0mn, (5.3)

the Enthalpy Function
hip,nN)=e+pv, 5.4

and Gibbs’ Function
G(p,®)=h-6n. 5.5



5. Material Response II: Inviscid Compressible Fluids 83

Calculating the derivatives of the free energy function written in the form

w(v,0)=¢(v,n(v, 0)-6n(v, 0), (5.6)
we obtain
v V,n T]v Ve 0
and
oy(v,0) _oe| om| ___o0n| __
00 _ﬁvé—év n eae ==, (5.8)

where Eqs. 5.1 and 5.2 have been used to simplify the expressions. We see from
these results that w(v,8) serves as a potential for the equations of state
p=p»0) and n=n(v, 0). Similar analysis of #(p,n) and G(p,0) shows
that these are also potentials and we have

ohipw _, koW _o, 06O __ . 9G(p0) __
op ’ on ’ op ’ 06

(5.9)

Thus far we have dealt only with the first partial derivatives of the potential
functions. Second derivatives are also important because they are associated
with such familiar material coefficients as bulk modulus, specific heat, and the
coefficient of volumetric thermal expansion.

Before addressing material properties specifically, we note that a useful
group of equations called Maxwell relations follows from the independence of
order in which mixed second derivatives arc calculated. For example, the two
derivatives of the internal energy function with respect to v and m are equal:

’e(v,m) _0e(v,m)

(5.10)
Ov on on ov
If we write this in the form
ov on on ov
and use Eqgs. 5.1 and 5.2, we see that
- g_e = g_p . (5.12)
Vin omy,
The Maxwell relations obtained from the other three potentials are
on op v 09 on ov
| == | ===, and -2 === (5.13)
ovlg 06|, anp 6p11 or|y 69p




84  Fundamentals of Shock Wave Propagation in Solids

5.1.1 Thermodynamic Coefficients of Fluids

The isentropic bulk modulus and isothermal bulk modulus, respectively, are
defined by the equations

B"=—v%’v’-1 and B®=-v22| | (5.14)

ov ‘e

and are functions of the thermodynamic state. The specific heats per unit mass
at constant volume and at constant pressure, respectively, are defined by the
equations

oot

= P = __6”
70 and C?=0

=5 (5.15)

Y p

The coefficient of volumetric thermal expansion, B , is defined by the equation

o
1
<
QJIQ)
D <

(5.16)

p

and the temperature coefficient of pressure at constant volume is defined by the
equation

A= Qg_ (5.17)
v
Finally, the quantity
B
y=v 6—’8’ (5.18)
v

is called Griineisen’s coefficient. We shall call the functions defined by
Eqs. 5.14-5.18 material coefficients or, more specifically, thermodynamic
coefficients.

The reason that attention has been focused on expression of thermodynamic
derivatives in terms of the various thermodynamic coefficients is that these
coefficients are identified with important material responses and have been
measured for many materials.

5.1.2 Relationships Among the Thermodynamic Coefficients

Since there are sixty permutations of the five variables p, v, €, 0, and n,
taken three at a time, there are many other thermodynamic derivatives of the
form of those in Eqs. 5.14-5.18. These derivatives can all be expressed in
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terms of the material propertics that have been defined and, indeed, the proper-
ties that have been defined are not all independent.

Analysis of thermodynamic derivatives and the relationships among them is
an exercise in chain-rule differentiation and manipulation of derivatives of
identities. We have seen that the functions p = p(v,n) and 6 =6(v,n) can be
obtained from ¢ =¢(v, ). To proceed further, we assume that these and simi-
lar functions are invertible for either of their dependent variables. This permits
us to write, for example, n=n(v,&). Substitution leads to the identity
n=n(v, e(v,n)) from which we can form the derivatives

ol oy _0nj osf (5.19)
only, Oel, oy
so we have the reciprocal relation
-1
AT R e [ R (5.20)
Oy \On|y 6

Because reciprocal relationships of the sort represented by Eq. 5.20 hold for all
permutations of the variables, the sixty possible thermodynamic derivatives
occur in thirty pairs. Only one derivative in each pair need be calculated be-
cause of the reciprocal relation between the two.

Another derivative of the identity n=m(v, e(v,n)) is

g_ﬂ Eo=.g_” Cul gﬁ , (5.21)
A% Ul v € Ot v v n
which can be written
om| _p
Em R (5.22)
By differentiating the expression € =¢(v, (v, 0)) we obtain
O0g| _Oe| Om| _,0n
71, ~am|, 3,00, (5.23)
so the specific heat at constant volume can be written in the new form
Cv= on . (5.24)
090 |,

Similar calculations relate other thermodynamic derivatives to the thermody-
namic coefficients that have been defined. These results are given in Table 5.1.
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The several thermodynamic coefficients that have been defined are not all
independent and equations relating them are often useful. As an example, we
note that differentiation of the function p = p(v, (v, 9)) yields the equation

ose

|, 50

_Op

o) %
L, Oc

30 (5.25)

14
which, when written in terms of thermodynamic coefficients, gives the equation
r=Lcv 5.26
=3 (5.26)

for the coefficient A in terms of Griineisen’s coefficient; y is usually used in
place of A in shock-physics calculations. From v =v(p(v, 0),0) we obtain the
equation

Ov ovl op| , Ov
—=| =0=2 = +=| , (5.27)
09|, dplg 09}, 06 »
or
-1
op ov| | ov ov| Op
== =—-=| | = =— = = , (5.28)
o0, aep[ap GJ 66p ovig
which can be written
A=BB°. (5.29)

Among the many other equations relating the thermodynamic coefficients we
have

_vBB® VA"

= = 5.30
T (5.30)
B"-B®=0y2C"/v (5.3
C?-CY¥=v0p2B® (5.32)

and
B"/B®=C?/C". (5.33)

Although thermodynamic analysis offers little information regarding the
dependence of material properties on the state variables, analysis of the ther-
modynamic stability of equilibrium states produces the inequalities

C">0, B°>0 (5.34)

constraining these coefficients [18, p. 135]. Since the right members of Eqgs.
5.31 and 5.32 are clearly positive, we see that B">B% and C?>CV,s0 C?
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and B" must also be positive. Using the relations among the various thermo-
dynamic coefficients one can show that A, B, and y all have the same sign and
experiments show that they are positive.

Table 5.1. Thermodynamic derivatives

- _PV
e 8@B"+pY)

pC”

39, (p-18)0

< pv—vOpBE

__B%Cr-pvp)

v

< |=
0
<

CV
0

5.2 The Ideal Gas Equation of State

As we have seen, the thermodynamic response of a material is characterized by
its equation of state. Many such equations have been developed. Some represent
simple idealized views of the behavior of a class of materials in a limited range
of the state variables. Others have been developed to capture the response of

=CP-pvp
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matter to high accuracy and over a broad range of thermodynamic states. These
latter equations of state usually exist in the form of large tables stored in com-
puters. In this and the following section we consider two conventional equa-
tions of state.

The simplest compressible fluid is the ideal gas. It is an experimental obser-
vation that the quantity pv#/6 (where ¥ is the molecular mass of the gas, or
the average molecular mass in the case of a mixture such as air, for which
M =28970 kg/kg-mole) has approximately the same value for all gases under
conditions not too far removed from those of the ambient atmosphere of a
laboratory. The value of the foregoing ratio, denoted by the symbol R, is
called the universal gas constant and has the value ® o= 8315 J/(kg-mole K).
The equation of state defining an ideal gas is

pv=R0O, (5.35)

where ® =Ro/M . In some cases, it is convenient to introduce a reference
state in which p= pr, v=vg, and 6 =6, with values of the state variables
constrained by the equation prvr =R Or . With this, Eq. 5.35 can be written

=l (5.36)

It is important to determine the specific internal energy equation of state for
of an ideal gas. To do this, let us consider the thermodynamic derivative

Ot

. =—p+M0=-p+BB0O. (5.37)

[:}

From Eq. 5.35 and the definitions of B and B® we find that

R and BO=—vOP

» PV ov

_RO_ . (5.38)
[} v

i
v 00

Substitution of these coefficients and Eq. 5.35 into Eq. 5.37 yields the result

o

=0, 5.39
7 (5.39)

0

and we see that the specific internal energy is a function of temperature alone.
Combining this result with the definition of the specific heat, CY, we obtain
the equation of state

3]
e=8(0)=¢r + J- C¥(0)do . (5.40)

Or
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Of course, this equation just expresses the unknown function £(6) in terms of
another unknown function C(0), so some further analysis is required.

The molecular theory of an ideal gas is one in which the molecules move
freely in the space available to them and interact only through elastic collisions.
No cohesive forces exist. This means that all of the energy of the gas resides in
the kinetic energy of the molecules and, hence, is of thermal origin. This is
consistent with the form of the equation of state 5.40. The classical kinetic
theory predicts that C¥ = fRo/(2M), where f is the number of degrees of
freedom of the gas molecule, 3 for a monatomic gas, 5 for a diatomic gas, and a
larger number for more complicated molecules. This equation, which agrees
rather well with experimental data for small molecules at moderate tempera-
tures, predicts that C” is a constant for a given gas. Although this is not
strictly true for real gases, we shall adopt the approximation that C¥ =Cy, a
constant, as part of the definition of an ideal gas. With this assumption, Eq.
5.40 becomes

£@)=er +CJ(0-0r). (5.41)

In this equation, g is the specific internal energy in the reference state. If we
define reference values such that

er =Cg ORr, (5.42)
then Eq. 5.41 takes its usual form:
£0)=Cy 0. (5.43)

Substitution of Eq. 5.43 into Eq. 5.35 gives the equation of state

R €
CRV 14 ( )

from which we determine Griineisen’s coefficient to be

R

= . 545
Y o (5.45)
Introduction of the ratio of specific heats™,
r=1+=, (5.46)
Cr

* One can show that C# -C¥ =g for an ideal gas, so I is indeed the ratio of specific
heats.
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simplifies the form of some equations. Note that most works on the theory of
gases write ¢ for the ratio of specific heats rather than for Griineisen’s coeffi-
cient as we shall do throughout this volume,

To obtain an equation of state of the form s =£(v,n) for the ideal gas, we
substitute Eqs. 5.35 and 543 into the First Law of Thermodynamics,
de =—pdv+06dmn. With some manipulation, we obtain

de__Rdv, 1 40 (5.47)

€ Cl‘{’v CI:

Introduction of reference values vr and er for specific volume and specific
internal energy, respectively, allows us to write the foregoing equation in the
form

defer) __® dr) 1, (5.48)

€/eR C}{ VIVR CF‘:

which can be integrated immediately to produce the result

e (35) ]+

where we have designated the value of the specific entropy in the reference
state by nr . We can write this equation in the form

& (YT n—Mr
= _(VR) exp|: o } (5.50)
Although defining an ideal gas in terms of Eqs. 5.35 and 5.43 is traditional,

one could equally well adopt Eq. 5.50 as the defining relation and then derive
the other two equations.

(5.49)

R

Substituting Eq. 5.50 into Eqgs. 5.1 and 5.2 yields the equations

p=(- )8_R<H)_ ex p[ncnk}

R

o=CFR (L)l—r exp| IR L

C; VR Cl;’
for pressure and temperature. We find that the reference values of the state
variables satisfy the equations

(5.51)

_ER _ PRWR
c. R

, (5.52)

pr=T-DE =g & ang g
VR VR

so the pressure and temperature equations can be written in the forms
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2o () e {u}
Pr VR cY

R

(5.53)
S () e[ nme]
Or VR C}:
The isotherm for which 6 =0* is given by
* v "
PO = prg— R =2 8" (5.54)
The specific internal energy at points on this isotherm is a constant,
@) =Cy 0%, (5.55)

as given by Eq. 5.43. The specific entropy at points of this isotherm is obtained
from Eq. 5.532:

Oy —mg =’ In| 8o {2\
n®)-nr CRln[eR(vR) ] (5.56)

The isentrope for which m=n*, obtained directly from Eq. 5.53,, takes the
form

P06 =pe (=) exp| |, (5.57)
VR Cr
and the temperature on this isentrope, as obtained from Eq. 5.53,, is
( ) v 1~r ’q"‘
oM () = eR(——) exp| | (5.58)
VR Cr

Substitution of Eq. 5.44, which can be written €= pv/(I'-1), into the
Rankine-Hugoniot equation 2.114 yields the Hugoniot

(C+Dvr—(-Dv
(C+Dv—(-Dvr

PH(V) = pr (5.59)

It remains to determine the temperature and entropy on the Hugoniot. This
can be done by direct appeal to Eqs. 5.53. From Eq. 5.53, we obtain

MO E)-ng =’ In [P(E_;(V) (%)F } (5.60)

and substituting Eq. 5.59 into Eq. 5.36 yields
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v pin(v) v C+Dw - -Dv
ve PR Nvg TFDv-@T -Dvr
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B (v) = O (5.61)
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Figure 5.2. Selected Hugoniot curves for an ideal gas. The parameters used are those
of air at rest at standard temperature and pressure, i.e. an initial pressure of 0.101 MPa
and temperature of 293 K. The broken curves are for a second shock propagating into
material that has been compressed by a first shock of strength sufficient to accelerate
the gas to a particle velocity of 250 m/s,

5.3 Mie—Griineisen Equation of State

For an ideal gas, the specific internal energy corresponds to the kinetic energy
of the constituent molecules and is entirely of thermal origin. As we turn to
consideration of condensed matter, we realize that the atoms are bonded to-
gether by interatomic forces and are often constrained to reside in a crystalline
lattice. The internal energy derives in part from thermal excitation of the lattice
but, except at very high temperatures, is dominated by the cohesive forces. This
means that equations of state and thermodynamic coefficients for solids are
fundamentally different from those for gases.

5.3.1 Specific Heat Coefficient for a Crystalline Solid

Lattice-dynamical calculations for solids provide useful information about their
thermodynamic properties. An analysis due to Debye yields the expression

v 3 pOD/0 4 ¢
€’ ;38 _Se de, (5.62)
Nk \6p) ), (@-12
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for the specific heat of a crystalline solid (see, for example, [106], Eq. 5.33). In
this expression, Op is a material property called the Debye temperature, N is
the number of molecules in a unit mass of the material and k is Boltzmann's
constant, 1.38032x1072 J/K. The number of molecules in a unit mass of
material is given by
No

N e (5.63)
where Ny is a constant called Avogadro’s number (it is equal to 6.0251x10%
molecules/kg-mole) and M is the average molecular weight of the material.
The integral in Eq. 5.62 must be evaluated numerically and, because of the
nature of the integrand, the integration must be initiated using the high-tem-

perature expansion
v 2
¢ =]- __1_ 92 +
3Nk 204 ©

A graph illustrating the dependence of C¥ on temperature is shown in
Fig. 5.3.

1.0

0.8 4

3Nk 04
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Figure 5.3. The specific heat CV, as given by Eq. 5.62, is plotted as a function of
6/0p.

The Debye theory leading to the foregoing expression for the specific heat
shows that Griineisen’s coefficient is a function of v alone and also provides the
equation

VR

eD(V)=9DR €xXp |:-— J‘ -Y—glj-lldV'] (5.64)
v

relating this coefficient and the Debye temperature. The constant 6pr is the
Debye temperature at the reference specific volume. Equations 5.62 and 5.64
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express CV as a function of v and 6. We shall see in the next section that C”
can also be expressed as a function of the single variable n.

Griineisen’s coefficient plays an important role in determination and
application of equations of state of crystalline materials. Equations 5.30 are
useful for determining y in a reference state corresponding to the laboratory
ambient. Determination of y(v) is more difficult, although a great deal of
theoretical and experimental effort has been expended on the problem. Of the
several equations for the dependence y(v) that are in use in shockwave
calculations [48,90] we shall often use the simplest empirical relation,

_¥r
y(v) = v (5.65)
The equation
y(v):V—Rv+3(1—L) (5.66)
VR 3 VR
is used in the SESAME library {70] and the equation
2
Y(v)=7—Rv+3(l—L) (5.67)
VR 3 VR

is used for the ANEOS equation of state [96]. Three theoretical models based
on the 8 =0K pressure isotherm, p®) (), (often called the cold compression
curve) are represented by the equation

)= (=2 _ldz [v2t/3p(K)(v)] (d[v2t/3p(K)(v)]

-1

302 dv? dv J ’ (5.68)
where 1=0, 1, and 2 correspond to the Slater—Landau, Dugdale—McDonald,
and Vaschenko-Zubarev (free-volume) theory, respectively. These equations
are useful when a theoretical expression for the cold compression curve of a
particular material is available or when a semi-empirical equation for this curve
(sec [48, p. 133]) is adopted. All of the foregoing equations capture the de-
crease in y(v) that is observed as the material is compressed, but the predic-
tions differ. For copper at 30% compression y from Eq. 5.67 exceeds the value
from Eq. 5.65 by 14.3%. The value of y/v from Eq. 5.67 is less than the value
from Eq. 5.65 by 14.2%. In each case the value given by Eq. 5.66 falls between
the other values.

When Griineisen’s coefficient is given by Eq. 5.65, the expression for the
Debye temperature becomes

O (V) = Opr exp (Y—R(VR —v)) . (5.69)
‘VR
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Either this result or Eq. 5.64 shows that 6p increases with increasing com-
pression.

The value of CV given by Eq. 5.62 approaches 3Nk in the high-tempera-
ture limit. This result,

CY=3Nk , (5.70)

is called the Dulong—Petit value for the specific heat. An important observation
to be drawn from Fig. 5.3 is that this limit is approached within 5% for
6> Op. Since the Debye temperature is near room temperature for many mate-
rials, and increases with increasing compression, use of the Dulong-Petit
specific heat is justified for many practical applications and this approximation
will often be adopted in this book.

Equation 5.70 should be used with caution when analyzing materials for
which 6p is significantly higher than that for which a value of C” is sought.
It is also important to recognize that the subject of shock physics includes a
large body of work devoted to very strong shocks that compress metals to
specific volumes as small as one-third of their normal value and temperatures
of many thousands of Kelvin. Under these conditions materials are in far
different thermodynamic states than were contemplated when the foregoing
theory was developed, and much more refined equations of state must be used
[62,70].

5.3.2. Complete Mie—Griineisen Equation of State

Griineisen’s coefficient can be defined by any one of the equivalent thermody-
namic derivatives

op
=y —
v Oe

_ v 06

__, olin®/6x)]
Yy

n ov

. (5.71)
n

v

A material is called a Mie—Griineisen material if y is a function of v alone, i.e.,
0y (v,m)/0n =0. Using Eq. 5.713, this condition can be written

& {m(—l—ae("’")ﬂ:o, (5.72)
omov| \Br In

where we have introduced the thermodynamic derivative 8 = 0g(v, n)/0n.

Integration of Eq. 5.72 with respect to | and then v yields the result

%M _ gy o), (5.73)
on

where we shall write %(v) in the form
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x(v) =exp |: I o(V) dv’} . (5.74)

VR
Both ¢ and w are functions that remain to be determined.

A further integration yields a specific internal energy equation of state of
the form

g(v,n) =er +Or L (M3 (M) +0Or &(V), (5.75)

with both 9 and £ as yet undetermined functions. The pressure and tempera-
ture equations of state following from Eq. 5.75 are

v, n)=—@=—elz £ (V) 9(m) ~O &' () (5.76)
and
o, n)=aef3—vr;”)=exz £ () ¥ (), 5.77)

where the primes denote differentiation with respect to the indicated argument.
Griineisen’s coefficient for this material, calculated using Eq. 5.712, is
y=—voH). (5.78)

From this result, we recover the initial premise that y depends on v alone,
identify the function ¢ as

oy=-12, 579
14
and express y (v) in the form
¥(v) = exp {— j l(—‘f'ldv} . (5.80)
VR v

The function % (v) occurs frequently in thermodynamic calculations.

The specific heat at constant volume for the material described by Eq. 5.75
is
___ 8 _Sm
v @/ 8
which shows that C'¥ is a function of n alone for the Mie—Griineisen material.

To express the function 8(n) in terms of CV we integrate Eq. 5.81, which we
write in the form

cv=on
o0

(5.81)
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1 d
= [In9'(n)], (5.82)
C’(m) dn
so that
n '
w@9=a¢[I f",}. (5.83)
nr €7
Integration of this result gives the equation
n i v’ n
S -8(mr)= I exp j v |9 = Jw(n’)dn’, (5.84)
e e €707) N
where
n ’
o (1) =exp j d", , (5.85)
e €7 ()

expressing 3(n) in terms of C¥(n). In forming this equation, we have chosen
the constant of integration so that 6 (vg, nr)=0r . From these results and Eq.
5.77 we find that O y(v) is the temperature on the isentrope for which

N="Mr.

Now let us return to Eq. 5.75. On the isentrope for which n=ngr, it be-
comes

eMV;Nr) =er +Or L (V)IMR)+OR (V) (5.86)

so we identify the function £(v) as
C(v)=BEJS“DO&nR)—SR]—XOOS(nR), (5.87)

and write Eq. 5.75 in the form
1
e(v, ) =M™ (VMR ) +Or 1(¥) I o(n)dn'. (5.88)
MR

Equation 5.88 is the complete Mie—Griineisen equation of state. The pressure
and temperature equations of state following from Eq. 5.88 are

n
pv,m)= p(n)(v; nr)+6r @x(v) I o(m)dn, (5.89)
nR

and
(v, =0r x(v)o(M). (5.90)
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If we choose the isentrope so that €™ (vr;nr) =er and pM(vg;nRr) = pr,
then the reference state is e=er, v=vr, N=Mr p=pr,and 6=0xr.

This equation of state is special in view of the restriction that y depends
only on v or, equivalently, that C¥ depends only on 7. Its generality is associ-
ated with the allowed variability of these functions and of the isentrope
g™ (v; nr) . The isentrope appearing in this equation is a reference curve that
conveys information about the elastic contribution to the specific internal en-
ergy (in a form that also includes a thermal contribution unless the isentrope
chosen happens to be the cold compression curve.)

In the analysis of this section we have introduced the parameter mgr, the
value of the entropy for the material in a particular state. For each material this
quantity has a unique value for given values of vg and Or . The basis for this
assertion lies in a postulate called the Third Law of Thermodynamics or
Nernst’s Theorem, which asserts that the entropy vanishes when 6 =0 and on
the experimental observation that C¥—>0 as 6->0, and does so rapidly
enough that we also have C¥/0 — 0 as 6 —» 0. Integration of the thermody-
namic derivative

om0 _C"(.0)
) 0

(5.91)

along the line v =vgr gives

R OV (g, O

Mg = MR, 60k )= J. 5 ) e . (5.92)

0

In many cases this integral can be evaluated using the Debye specific heat. The
calculation may not be this simple when phase transformations or other com-
plications occur, but it is clear that a specific, positive, value of the entropy
corresponding to each state vr, Or still exists. For our work this knowledge is
usually sufficient since we shall be interested only in entropy differences be-
tween states. Adoption of the same philosophy regarding ez leads to the value

ORrR
eR=8(vR,9R)=J- CY(vR,0)do . (5.93)
0

Again, we are usually interested only in the difference in the value of & for
different states, in which case gr can also be chosen arbitrarily.

It is frequently convenient to specialize the foregoing equations of state to
the case that CV is constant, C¥ =Cyg, and y(v)}/v =yr/vr, also constant.
They then take the simpler forms



5. Material Response II: Inviscid Compressible Fluids 99

g, M) =eM¥;nr) +Cy Or X (M| 0c () -1]
P, n)=p<">(v;nR>+{§C£ Or %e (M) [0e () -1] (5.94)

8(v,n) =6r Yc (V) 0c (),

where

v

2o (V) = exp [Y—R(VR - v)] and  o.(n) = exp [ﬁ—_—ﬂ-“—} . (5.95)
VR CR

In these and various subsequent equations the subscript ¢ is used as a reminder
that y(v)/v and C"V are taken to be material constants.

It is often useful to express these equations of state in terms of temperature
instead of specific entropy. This can be done by eliminating o.(n) in favor of 6
in Eqs. 5.94, but a better approach is to proceed by developing the Helmholtz
free energy function equivalent to Eq. 5.94,. The Helmholtz free energy func-
tion (v, 8) given by Eq. 5.3 is obtained as follows: Use Eq. 5.94; to eliminate
wc(n) from Eq. 5.94,. Then substitute Eq. 5.95, into Eq. 5.94; and solve the
resulting equation for . Finally, substitute these results into Eq. 5.3 to obtain
the equation

0

Y, 0) =MW, nr)+Cg [6-6g % (v)]~Cy 6In (—9——

-Onr. (5.96
RXc(V)j nr. (5.96)

A somewhat more appealing result is obtained if we replace the reference
isentrope with an isotherm. An equation relating these curves is obtained if Eq.
5.94; is used to eliminate wc(n) from Eq. 5.94; and the resulting equation
evaluated for 0 = Or . The result is

e@(v;0r) =eM(v;nr) - Cx Or [%c (v) - 11, (5.97)

so the Helmholtz free energy function can be expressed in the form
y(,0)=e®v;0r)+CR (6-6r )-Cx O 1n _9 —-0nR . (5.98)
O %c (V)

The pressure, specific entropy, and specific internal energy equations of state
that follow from this function are

p(v.8) = pO; eR)+1—Rc;(e—eR)
R

v 0
T‘(V, 9) =MNRrR +CR ln[m) (599)

e(v,0)=gr +¢ O, 0r)+Cy (0-6R).
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Mie—Griineisen p—v—¢ Equation of State. Evaluation of Eq. 5.76 for n=nr
allows us to write

Br §'() == p™W(v; Mr) ~Or X' (V) S(NR), (5.100)
and solution of Eq. 5.88 for 3(m)—-3(nr) gives
1
$(-9(ne) = [, M- ;). (5.101)
Or % (V)
Substitution of these results into Eq. 5.76 leads to the equation
= pM(y: 1) —eM (p:

pv,m)=p (v,nR)+——v——[8(v,n) e (v;mr)]. (5.102)

Usually, this equation is applied to the case in which p(v,n) and e(v,n)
are associated values of pressure and specific internal energy on a curve such as
a Hugoniot or an isotherm. In this case, Eq. 5.102 is written

p)=p®)+ X2y e )], (5.103)
v

which is the usual expression of the Mie—Griineisen p—v—¢ equation of state
with an isentrope as the reference curve.

When the pressure and specific internal energy on some curve other than
the isentrope, say a Hugoniot p‘)(v), are substituted into Eq. 5.103 we obtain

paX(v) = p(")(v)+l§v1)—[s(H)(v)—-s(“)(v)]. (5.104)
Subtracting this equation from Eq. 5.103 yields the result
p®)-p») =L (em) -s0)l, (5.109)

an equation of the same form as Eq. 5.103, but referred to a Hugoniot instead of
an isentrope. Similar equations are obtained when the Hugoniot is replaced by
an isotherm or any other reference curve, and we refer to any one of these
equations as a Mie—Griineisen p—v—e equation of state. Mie—Griineisen equa-
tions are widely used in analysis of shock compression in the range of pressures
up to a few hundred GPa in many common solids. Most often, the phrase
“Mie—Griineisen equation” refers to Eq. 5.105 rather than the complete Mie—
Griineisen equation of state.

Adjoining a Mie—Griineisen p—v—¢ equation of state to the three jump con-
ditions as represented, for example, by Eqs. 2.113, gives four equations in the
five variables p+, v+, X+, €, and Us. When one of these variables is given
as a measure of the stimulus driving the shock, the others can be determined.
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5.3.3 Thermodynamic Response Curves

If a complete equation of state such as € =¢(v, 1) is available, determination of
isentropes, isotherms, and Hugoniots is, in principle, both simple and direct.
We have

pv,m)=- -6—8%’—"—) (5.106)
and the curves
p=p.n") (5.107)
for various values of entropy, n*, are the isentropes.
Equation 5.2,
(v, m) = aig:;—Q , (5.108)

can be inverted to give n=n(v,0) and the result substituted into the function
p = p(v,n) obtained previously to give an expression p = p(v,0). The curves

p=p»0Y (5.109)
for various values of temperature, 0%, are the isotherms.

The Hugoniot is obtained by substituting the state function €(p, v) into the
Rankine—Hugoniot equation, giving the implicit equation

e(p,vV)=1(p+p ) -v)+E(p", v") (5.110)
for the p—v Hugoniot curve centered on the point p = p*, v=v*.

The foregoing analysis is difficult to apply because the equation of state,
e =¢(v, M), is not usually known. However, several empirical expressions for
isotherms are available and Hugoniot curves have been measured for many
materials. The OK isotherm for a material, called the cold compression curve,
p = p&)(v), has been calculated for a number of materials using theories of
the physics of solids. Several empirical expressions for this curve are available
[48, p. 133]. What is needed is a way to evaluate the complete thermodynamic
state at points on isotherms, isentropes, and Hugoniots, and to extrapolate these
data to cover regions of the p—v plane in the neighborhood of the known
curve.

Mie~Griineisen Hugoniot. One case in which the analysis just described can
be carried out is that of the complete Mie—Griineisen equation of state. By
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using Eqs. 5.88 and 5.89, along with the definition 5.80, we can write the
specific internal energy as a function of specific volume and pressure:

e, p)=——[p- PPV Mr)]+EM (v MR). (5.111)
y(v)

The pressure and specific internal energy at points on the Hugoniot centered on
p=pr, v=vr,and e=gr are related by the Rankine—Hugoniot equation, so
we have

[ p® ) - p®w; )]+ M mr)
) (5.112)

1
=P+ prlovr vy +ex,
which can be solved for the Mie—Griineisen Hugoniot,
p(n)(v R )+Y( ) r(VR v)+@[eR—s(“)(v;nR)]

P )= . (5.113)
1-29 e —v)
2v

The principal Hugoniot corresponding to the reference state pr =0, v=vwg,
gr =0 takes the simpler form

p(n) (v, nR) _Mg(n) (v’ T]R)

pH )= . (5.114)
1— 1((‘})(1,R v

As we shall see, isentropes can be related to isotherms, so the Mie—
Griineisen Hugoniot can be expressed in terms of either of these curves.

5.3.3.1 Isotherm

When a p-v isotherm is available it can be used to calculate an isentrope or
Hugoniot. In cases in which an isotherm is not available, one can construct it
from a measured Hugoniot.

Isotherms for some materials are available as the result of direct measure-
ment or extrapolation of low-pressure data. Isotherms derived by extrapolating
low-pressure data are usually obtained by substituting measured values of the
isothermal bulk modulus, B® and its first pressure derivative,
B'®=9B%(p,0)/0p, into an empirical equation for the curve. Two such
equations are the Birch—Murnaghan equation,
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38 o).

(5.115)
and one proposed by Rose et al. (see, for example, [90, Eqs. 1.34 and 1.35]),

PO @) =3B° (%)—2/3[1_(%)1/3] exp{%(ye_l) [l—(vv;) 1/3]}’
(5.116)

for the temperature at which the parameters vr , B®, and B'® were deter-
mined at zero pressure.

The entropy at points on an isotherm can be calculated from the thermody-
namic derivative

am

= 6=Y(V—V)C“(v,6). (5.117)

On the isotherm 0 = 0* this is the ordinary differential equation

dn(v, 6% =m

Vi OF
T L CY (09, (5.118)

which has the solution

N, 0" =n*+ J.

v

YY) ovi, 6%y av'. (5.119)
14

»

If we assume that y(v)/v=yr/vr and C¥=Cy, we get the more explicit
result

. YR v
n®w;6 )=n*+%CR(v—v*). (5.120)

The specific internal energy on this isotherm can be obtained by integrating
the thermodynamic derivative

%

], .~ PO 9*)+@C Y(v;0M)0", (5.121)

6=0*

giving

e®@w;0") =g} — I p(e)(v’;G*)dv'+6*J. L‘:)C"(v’; oMdv', (5.122)
oV

VR R
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where s} is the internal energy when v=vg and ©=0*. If the material
properties y(v)/v and C" are constant this equation takes the simpler form

£®(v,0%) =g} - j p<e)(vge*)dv'+%q{ 0" (v—v2). (5.123)

vk

Transforming an Isotherm to a Different Temperature. Isotherms are most
often measured at room temperature, approximately 300 K. When y(v) and
CV (v, 8) are known it is possible to transform a known isotherm to one for a
different temperature.

Integration of the thermodynamic derivative

op
20

=MCV(V, 0)
v

v

at a given value of v yields the equation
(v) e**
PO, 0™ = pOv; 0%+ 12 J' C¥(v,0de', (5.124)
v 0"

relating the 8" and 6™ isotherms. Similarly, integration of the thermodynamic
derivative

Os

=C”(v,0
%0 (».9)

v

at a given value of v yields the equation

ok

%)
e® ;0™ =e® ;6" + j CY(v,0)do . (5.125)
e >

In the special case that y(v)/v and CV(v,0)are constants, Eqs. 5.124 and
5.125 take the simpler forms

e®(v;0™) =e®(v;0") +Cy (0™ -0")
(5.126)
POW;68™) = p®(v; 6% + %Z—cg(e** -6,

and we see that, in this special case, the two isotherms have the same shape and
differ only by a translation in specific internal energy or pressure.
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Figure 5.4 shows the result of applying the foregoing analysis to the trans-
formation of a room-temperature pressure isotherm represented by Eq. 5.116 to
two higher temperatures.

20
15 \

%
8" \\\
< 10+ 700 K
500K
5 -
0=203K"
0 T T T
3.0 3.5 4.0 4.5 5.0

v x 10 m¥%kg

Figure 5.4. A 293 K isotherm for NaCl represented by Eq. 5.116 has been transformed
to 500 and 700 K, respectively, using Eq. 5.126.

5.3.3.2 Isentrope

Isentropes, curves on which m is constant, are also of interest in connection
with shock wave studies. In particular, decompression processes are usually
isentropic (see Sect. 9.1). One is not usually presented with an isentrope
derived by the methods of atomic physics or measured experimentally, but the
results of ultrasonic experiments and some experiments with weak shock waves
can be interpreted to yield isentropic bulk moduli and, therefore, isentropes
valid over a range of modest compressions. The analysis of these isentropes
proceeds in a manner analogous to the analysis of isotherms presented in the
previous section.

The specific entropy of the material at some reference specific volume and
temperature can be determined using Eq. 5.92.

The temperature on an isentrope is calculated using the thermodynamic de-
rivative
v 00

On the isentrope corresponding to m = n*, this expression becomes an ordinary
differential equation for 8(v;n"):



106  Fundamentals of Shock Wave Propagation in Solids

ae _ y(v)
==y e, (5.128)
which can be written
(m *
dOT Y __ Y0 4y, (5.129)
0 v
The solution of this equation is
9(")(v,n*)=e*exp{ —J‘ L‘:)dv' =0%y(v), (5.130)
.V

where the constant of integration has been chosen so that 6 =6* is the tem-
perature when v=v* and n=mn+*. When y(v) is given by Eq. 5.65, this takes
the simpler form

M, ") =0*y.(v). (5.131)

Proceeding as before, we obtain the equation

v
eMy,n")=¢e*- I PG, n)dv' (5.132)

y*

for the internal energy at points on the isentrope for which € =¢* and n=n"
when v=v~*,

5.3.3.3 Hugoniot

The Hugoniot curve is defined by the constraint on the equation of state that the
Rankine—Hugoniot equation be satisfied. To calculate the temperature and
entropy at points on a Hugoniot, we begin with the Rankine—Hugoniot equa-
tion, which we write in the form

S(H)(v)=8’+-%—[p(H)(v)+p“](v” V), (5.133)

where e =M (v) and p= p(H)(v) are the e—v and p—v Hugoniots centered
on p=p- and v =v-. Differentiating Eq. 5.133 yields the equation

de®0) 1 dp(D
%:E{(V‘—v)pd—v(v)—p(m(v)—p‘} (5.139

Along the Hugoniot, the differential of the specific internal energy function,
de =0dn— pdv, can be written in the form
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de®(v) dn® )
22 A gy A (D)
0 (v) pEIW). (5.135)

Combining the foregoing two equations, we obtain

dn®@) kM)
v 200D()°

(5.136)

where
dp®(v)
dv

k(W)= pEW)-p~+(v -v) (5.137)

Before this equation can be solved we must determine the temperature
0™ )(v) . To do this, we note that the differential of the equation 8 =06(v,n) is

d0=29 v+ 2 59 dn, (5.138)
i
which can be written
—p L2 Y(") v+ ve dn. (5.139)
C'(m)
On the Hugoniot, this equation takes the form
do®m) () 1 axy,. dnE )

v = v 0 (V) +W 0 (V) T . (5140)

When this equation is solved for dn()/dv and the result substituted into
Eq. 5.136 we obtain

dom () y(v) 0 (v) = k()

- 2CT (5.141)

When C" has the constant value Cy , Eq. 5.141 takes the simpler form

(H)
a0) 1) o) (v) _x0 (5.142)
dv v v
R
In this case, the solution can be reduced to quadrature by well-known means
and the result is

o1 [T ke,
0 () = 0 d 5.143
) X(V){ +2C1{ .[ L) v}’ ( )

and n®(v) is given by
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17 ko)
DEy=n~+— | —tdV', 5.144
@) =nT 4o _Leﬂi) Y (.144)

where the constants of integration have been chosen so that 6 =6~ and n=n"
when v =v- . Recourse to numerical integration is usually required to evaluate
the temperature and specific entropy Hugoniots. In the final portion of this
section we pursue the analysis further under the most common assumptions on
y(v) and p(v).

Linear Us —x Hugoniot. When the p—v Hugoniot is given by Eq. 3.12 the
function x(v) of Eq. 5.137 becomes

9 a3 2 (& - V)2
k(v)=-2p3 SC; TR (5.145)
SO
0 () =y (v)$6™ - pkscs [ 1 vr-v)* (5.146)
Cr )10 [I-pr SR -1 [’

and, with these results, the temperature and entropy Hugoniots can easily be
evaluated numerically. Example results of the determination of temperature and
specific entropy on the Hugoniots of copper and aluminum alloy 2024 using
these equations are given in Fig. 5.5.

Admissibility of Solutions to the Jump Equations. In the discussions of
Chaps. 2 and 3, it was assumed that stable shocks corresponding to solutions of
the jump equations actually exist. This is not true for all possible solutions of
the jump conditions. Although this issue might usefully have been addressed
earlier, it was necessary to defer the discussion until the equations for calculat-
ing the specific entropy of shock-compressed material were developed. The
entropy-production inequality holds that a solution of the jump equations that
results in a decrease in entropy is inadmissible. Examination of Eq. 5.136 (a
sketch is helpful) shows that the specific entropy for states on the Hugoniot
increases with increasing compression when the Hugoniot is concave upward
and decreases with increasing compression when it is concave downward. Since
a process that results in a decrease in entropy is inadmissible, we conclude that
compression shocks cannot exist when the Hugoniot is concave downward. The
same analysis of decompression shocks shows that they cannot exist for materi-
als having a Hugoniot that is concave upward. As we shall see in Chap. 9, the
cases in which shocks cannot exist are exactly those that admit smooth waves
as solutions.
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Figure 5.5. Temperature, pressure, and specific entropy Hugoniots as functions of
compression for copper and aluminum alloy 2024 calculated from the Hugoniot data of
Table 3.1.

Entropy Jump at a Weak Shock. Two stress—deformation curves that are
important in analysis of longitudinal wave propagation are the Hugoniot, the
locus of endstates of shock transitions, and the isentrope, the path followed by
the state point as a smooth clastic wave passes a given material particle. The
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specific issue addressed in this section is the degree to which these curves differ
and, in particular, the jump in entropy that occurs across a weak shock.

The Rankine—Hugoniot jump condition shows that the equation
HW)= S(H)(v)~8_+%[ P+ p- ](v-—v”) =0 (5.147)
must be satisfied along a Hugoniot curve centeredon §™ ={v~, p~,€7,Xx"}.

Differentiating the function H (v) and substituting from Eq. 5.135, we ob-
tain

dH de®) 1 \dp® 1 _
=2 v L pn

0 dv dv A dv +3 (P +p7)

(5.148)
_odn® 1oy 1 dptD)

Evaluating this derivative at the center point .§~, we find that

dnd) g (5.149)
dv |-

i.e., the rate of change of entropy with respect to specific volume along the
Hugoniot at the center point is zero.

Differentiating Eq. 5.148, we obtain

dOH) dn()
0= antd L o)
dv dv M dv?

d2n@ 1

2
+-2—(v-—v—) d*p@) .

dv?

(5.150)

Evaluation of this result at the center point and using Eq. 5.149 yields

d?nH)
dv? |-

=0. (5.151)

Finally, let us take a third derivative. From Eq. 5.150 we obtain

0 420D dn@ . doe) d2naD
T dv? dv dv  dv?

3nH 2,(H 3,(H
dn()+ldp()+_l_(v_v‘)dp(3)’
dv

+6
av? 2 dv? 2

which yields

@] 1 dzpen)|
dvd |s- 207 dv2 |5

(5.152)
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The expanded form of the function n) (v) giving the value of the entropy
along the Hugoniot is

dn H) , Ld2ne

2d2

3
[[VI’Z +ld ’I’](H)

HYV)=nE) (V) +
N ) = NE () DbPe5

_ﬂvﬂ3+"g

but substitution of Eqs. 5.149, 5.151, and 5.152 into this expression shows that
the jump in entropy across a shock is given by

l=- L& (H)Oo

T [ IP+- (5.153)

to within terms of fourth order in [v]. This equation shows that the entropy
jump across a weak shock is very small so that the shock transition is almost
isentropic.

We also record a result, similar to the one above, that was derived [109, Eq.
1.89] starting with the enthalpy response function:

[n]=—-L 42 an(p)
120

ﬂ 1P+ (5.154)

5.3.4 Relationships Among Thermodynamic
Response Curves

In this section, we derive equations relating the various thermodynamic curves.
The graphical depictions of these results that are presented are calculated using
the Dulong—Petit specific heat, the equation y(v)=yrv/vr, and the linear
Us —x Hugoniot of Eq. 3.10. In the foregoing equation for y(v), the specific
volume vr is the value at which y(vr)=vr , and is not to be confused with
other reference values of the specific volume to be introduced. Results obtained
on this basis are not the most refined available, but are easily obtained, illustra-
tive, and acceptable for many purposcs. Applications often require that a
Hugoniot be centered on a specific reference state or that an isotherm or isen-
trope pass through a given state. The equations presented in this section have
been developed to meet these requirements. A distinct reference state is adopted
for each of the several curves considered in this section. This complicates the
notation and appearance of the equations developed, but adds to their generality
and is necessary for some applications.

5.3.4.1 Relationships Between Isotherms and Isentropes

Isotherms and isentropes are related to one another by the Mie—Griineisen
equation
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PO ) - p("’(V;G%{”)=1%Q[s("’(vm§{")—s<°>(v;e§$>)]. (5.155)

We also have Eqs. 5.122 and 5.132, which we write in the forms

ﬂ?“%ﬂ%&ﬁ—j;ﬂ@%@%ﬂ
v

YR

@ (v; 60) =l + 0 j \
o
(5.156)

and

\4
éWm@h&Mj AU DL (5.157)

n
YR

relating the specific internal energy to the pressure on each of these curves. To
obtain an equation relating the isotherm and isentrope, we substitute Eqs. 5.156
and 5.157 into Eq. 5.155 and differentiate the result, giving

dp™ (v, n(")) () v _Cf_(Y(V)) M) (v (M
dv v ywydv v PR

_ dp<e)(v;e§§>)+[y(v)_ v j_(v(v)]]p(e)(v;(;g)) (5.158)
dv v yWmdv v

( (V)) cve®.

We see that this is the familiar linear, first-order ordinary differential equation.
If the pressure isotherm is known it is an equation for the pressure isentrope
and if the pressure isentrope is known, it is an equation for the pressure iso-
therm. When the isotherm is sought, the specific heat is expressed as a function
of specific volume and the constant temperature on the isotherm. When an
isentrope is sought, the specific heat is expressed as a function of the constant
specific entropy on the isentrope. When Eq. 5.158 is solved, the specific inter-
nal energy isotherm or isentrope is obtained from Eq. 5.156 or Eq. 5.157, as
appropriate.

If we adopt the approximations that C¥ and y(v)/v are constants, equa-
tion 5.158 takes a simpler form, but the isotherms and isentropes are more
easily determined directly from the complete Mie—Griineisen equation of state.
When seeking equations for the isotherms in terms of the isentropes, we use
Eqgs. 5.94. When secking equations for the isentropes in terms of the isotherms,
we use Eqgs. 5.99. In writing equations for these curves, we have allowed the
isotherms and isentropes to have different reference states. For the pressure and
specific internal energy isotherms, we obtain the equations
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POE;00) = pw; i) +1 00| p® - P ;) |
(5.159)
R ~v
SR ere@ [1@w)-1),
VR
and

3%
e@(v; 69 = & — eV +—R[x£‘”(V) - l][pl({e) - PP n%‘))]
TR (5.160)

+eM ;) -G 00 [0 -1]

For the pressure and specific internal energy isentropes through the point
p=pM, v=v{V, we obtain the equations

PO = PO 0)+ T2 g o) [10)-1]
R

(5.161)
P[P - POE; 09|
and
eM; V) =e®@@; 6y + L 6 [xﬁ") ) -1 ]+ eV
(5.162)

VR
~s OO )+ ) [ - PO 09|

5.3.4.2 Relationships Between Hugoniots and Isotherms

As we have mentioned, atomic-interaction calculations or extrapolation equa-
tions such as 5.116 can be used to obtain isotherms for various materials. When
a Hugoniot is needed, it can be obtained from the isotherm. In principle, this
can be done by calculation of the specific-volume difference as a function of
pressure or the pressure difference as a function of specific volume (see
Fig. 5.6). In practice, the better choice is calculation of the pressure offset
because this can be done in terms of more convenient thermodynamic proper-
ties.

Let us assume that the isotherm p = p®)(v, 80) is known. This isotherm is
related to the Hugoniot that we seek by the Mie—Griineisen equation of state,

PV =p®®©,00) +4\2 [ e ) -e® (v, 60)], (5.163)

and the pressure and internal energy on the Hugoniot are related by the
Rankine—-Hugoniot equation
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Figure 5.6. Illustration of the relationship between a p—v Hugoniot and an isotherm

s (v) = gg + % PIW) (vr V), (5.164)
where the reference state has been chosen to be that for which p=0 when
V=VR.

Substituting Eq. 5.123 and Eq. 5.164 into Eq.5.163, and solving for
pA(v) gives

PO, 90)+&)—l ER ~€0 +J.
v

vo

’ 1)
p(e)(v',eo)dv'—eoj. y—,C"dv’
%

vo

3

p(H)(v) =
1- 1Y) v (vo-v)
2v

(5.165)

where vo, €0, and Qo are values on the isotherm at the pressure p =0. The
specific volume and specific internal energy offsets at p =0 are given by

Or
Vo =vRexp[B(Go~9R)] and SR-S():J‘dee, (5.166)
60

where B is the coefficient of volumetric thermal expansion and C? is the
specific heat at the constant pressure p=0.

In the case that y(v) is given by Eq. 5.65, Eq. 5.165 takes the simpler form

v

PO, 90)+?}—§—{ ER —g0+ j PO, 00)dv -0 I—;Cﬁ’ (v—vo):l

P = -

- TR

2VR (vo-v)

(5.167)
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Examination of Fig. 5.6 shows that calculation of the Hugoniot for specific
volumes greater than vy requires extrapolation of the isotherm into the tensile
region or calculation of a pressure offset from the line p =0. Because it is
easier, we shall adopt the former procedure. Usually, errors in the Hugoniot at
low pressure are unimportant because only the higher-pressure portion of the
curve is used. An example calculation of a Hugoniot from an isotherm is shown
in Fig. 5.7.

25 -
20 LANL Hugoniot
— — -—  Hugoniot from isotherm (lower Hugoniot)
15
(-]
By
O
10 4
isotherm
5 4
0 I T T T I |
0 5 10 15 20 25 30

A, %

Figure 5.7. An isotherm and a derived Hugoniot for sodium chioride (NaCl). The
isotherm is obtained from Eq. 5.116 using the modulus values B® =23.97GPa and
B'®=505 and the offset to the Hugoniot is calculated using C¥=854J/(kgK),
pr =2165kg/m*® Br =293K, and yg =1.60. The Hugoniot is in sufficiently good
agreement with a measured Hugoniot [46] that the difference is not easily seen on a
graph of this scale.

Either Eq. 5.165 or the simpler equation 5.167 can be used to calculate an
isotherm through the point at which a known Hugoniot is centered. Taking the
simpler case as an example, we have, after differentiating,

© (v ) 2
dp d(v,90)+Y—Rp(9)(v;90)=Kc(v,90)+(Y_R) C}‘{eo’ (5168)
v VR VR

where

)
=] 1o T g~y |2P0) | v P, (5.169)
2VR J av 2VR
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This is in the form of Eq. 5.142 and can be reduced to quadrature in the same
way, thus yielding the isotherm

PO, 00) = 10| px + j KO gy - IRpoo[1-ge)]  (5.170)
vo XC (v ) VR

that passes through the state p=0, v=v, and corresponds to the temperature

0= 60.

Once the pressure isotherm has been determined, Eq. 5.163 can be solved
for the specific internal energy isotherm

ZO;00 = PO 00 - pP0) [+500)
R
(5.171)

=sr + = pO(v; 00) +[l(VR —V)—vi}p“”(\f),
YR 2 YR

where the second of these equations is obtained using Eq. 5.123.

Cold Isotherm. The OK isotherm (also called the cold isotherm or cold com-
pression curve) plays an important role in determination of equations of state
for condensed matter. Often the specific internal energy is obtained by adding a
thermal energy term to the elastic energy at 0K, as represented by the cold
isotherm. A number of quantum-mechanical and semi-classical methods have
been used to calculate the cold isotherm. The thermal term can be obtained
from the Debye theory or any of several more refined models. This subject area
forms a major part of modern investigations of the equation of state of matter,
but the analyses are based on methods of atomic physics that are beyond the
scope of this book. In this section we restrict attention to the relationship
between the cold isotherm and the Hugoniot.

These two curves are related by Eq. 5.165 which, when 6 =0, can be writ-
ten

[1-M(Vo -v)}p<H><v)=p<K>(v)+M{eR —go+ I p<K>(v'>dv}, (5.172)
v v

vo

where g is the specific internal energy at p =0 on the Hugoniot and €o is the
specific internal energy at p=0 and v =v, on the cold isotherm. The equation
Yy()/v=vr /vr can be used, but the reference specific internal energy terms
require attention because of the behavior of the specific heat at low tempera-
tures. We can choose €0 =0 and calculate gr relative to this value using Eq.
5.93 with Cv given by Eq. 5.62. The specific volume vo can be determined by
evaluating Eq. 5.172 at v =v¢ and solving the resulting equation,
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P (vo) =12 gx (5.173)
VR
for vo . With these results, the Hugoniot p™(v) is given by Eq. 5.172 when
the cold isotherm is known. If the Hugoniot is known, the cold isotherm can be
obtained by solving this equation for p®)(v).

5.3.4.3 Relationship Between a Hugoniot and an Isentrope

An isentrope can be determined from a Hugoniot by calculation of the pressure
offset of the two curves in much the same way as was done in the preceding
analysis. A Hugoniot and an associated isentrope are shown schematically in
Fig. 5.8.

Figure 5.8. Tlustration of the relationship of a Hugoniot curve and the isentrope
through the point (p+,v+) on the Hugoniot centered on the state p=0, v=v&.

The pressure-offset calculation made using the Mie—Griineisen and
Rankine—Hugoniot equations and Eq. 5.132 relating pressure and specific
internal energy on an isentrope gives the equation

v
p<"><v;n+)=y—(vvl - j p<">(v';n+)dv'+—;—p+(vR—v+)
v+

(5.174)
+[1-—1-~Y—("—’(vR —v)} POE),
2 v

relating the Hugoniot and the isentrope. To solve this integral equation for the
isentrope in terms of a known Hugoniot we begin by differentiating it to convert
it to a linear first-order ordinary differential equation for which the solution can
be reduced to quadrature. When y/v =yr /vr this latter calculation leads to
the particularly simple result
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My nt
Mﬂ_)+Y_Rp(n)(v; )=k (v), (5.175)
dv VR
where
(H)
Ke(V) = ENLS PEW +|1- -}—B(VR -v) ) )
2 VR 2 VR dv
The solution of Eq. 5.175 is
P =% M) P+ I K“—(V,Zdv' . (5.176)
vt Xc (V )
where
= YR o+
Le(V)=exp| —( " -v) |. (5.177)
VR

Equation 5.176 is easily integrated by numerical means, and an example result
is shown in Fig. 5.9.

100

75 4
&
O 50
Y

25 4

0 . . . . . s S E a—

0.7 0.8 0.9 1.0 1.1
v/vyp

Figure 5.9. Pressure~specific-volume Hugoniot and decompression isentropes for
aluminum. The higher-pressure case is for release from v=0.67vg (85 GPa) and the
lower-pressure case is for release from v =0.77vg (38 GPa). It is easy to see that the
decompression isentrope differs little from the Hugoniot at low pressures, thus justify-
ing the approximation in which the former is replaced with the latter when calculations
are made in this range.

The temperature at points on the decompression isentrope is given by
Eq. 5.130, where v* characterizes the Hugoniot state at which decompression
begins and 0* is the temperature of the material at this Hugoniot state. The
result of making this calculation for the isentropes shown in Fig. 5.9 is given in
Fig 5.10.
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3000 -
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Figure 5.10. Temperature—specific volume Hugoniot (solid line) and decompression
isentropes (broken lines) for aluminum. The higher-pressure case is for release from

v=0.67vg (2700 K) and the lower-pressure case is for release from v=0.77vr
(893 K).

5.4 Exercises
5.4.1. Derive Eq. 5.30.

5.4.2. Derive Eq. 5.31. Hint: Consider the function p= p(v,0(v,n)).
5.4.3. Derive Eq. 5.32. Hint: Consider the function n=n(6,v(p,9)).
5.4.4. Derive Eq. 5.33.

5.4.5. Work out a specific form for the p—x Hugoniot for an ideal gas.

5.4.6. Work out a specific form for the p—v second-shock Hugoniot for an
ideal gas.

5.4.7. Can an ideal gas be compressed to arbitrarily large density by a shock? If
this gas is compressed by two shocks passing sequentially through it (a two-step
compression process), and by a single shock resulting in the same final pres-
sure, How do the final densities differ?

5.4.8. Calculate B®, B C», C¥, B, and y for an ideal gas.

5.4.9. Using Eq. 5.136, develop, in detail, the argument for entropy change at
a shock. In particular, show that the entropy density
i. increases upon passage of a decompression shock when the p—v
Hugoniot is concave upward and
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ii. decreases upon passage of a compression shock when the p—v
Hugoniot is concave downward.

5.4.10. Show that Eq. 5.143 is a solution of the linear first-order ordinary
differential equation 5.142. Use a personal computer and a spreadsheet pro-
gram to calculate 6 (v) from Eq. 5.146 when v~ =g . It is sufficient to use
the trapeziodal rule for the integration.

5.4.11. Derive the equations for transforming a known isentrope of a Mie—
Griineisen material to a different specific entropy.

5.4.12. Derive the equation for a second-shock Hugoniot of a Mie—Griineisen
material having a known principal Hugoniot.



CHAPTER 6

Material Response III: Elastic Solids

The stress response of finitely deformed elastic solids has been a subject of
investigation for more than three centuries. Its importance to shock physics
derives in part from the need to very accurately describe the small nonlinearities
observed when certain strong solids are compressed by a few per cent and in part
by the need to describe the elastic contribution to finite elastic—plastic deforma-
tions. In uniaxial deformations neither the shear strain nor the compression
dominates the process but states of large compression combined with small
shear do arise in more general elastic deformations and can also arise in connec-
tion with the elastic part of the deformation in problems of uniaxial elastic—
plastic strain to be discussed in Chaps. 7 and 10. This suggests the need for a
theory in which large compression is taken into account but in which simplifica-
tions made possible because the shear strain is small have been introduced.

6.1 Objective Stress Relation

In Sect. 4.3.1 we described an elastic material in terms of a specific internal
energy equation of state € =g (F,n). For this to be an acceptable constitutive
equation, € must transform as a scalar under the change of the spatial frame
represented by Eq. 4.1. It must also capture observed symmetries of response by
the group of changes of reference frame to which it is invariant. These require-
ments restrict the way in which € depends on F. Both the specific internal
energy € and the specific entropy m transform as scalars under the change of
spatial frame, i.c. ¢* =¢ and n* =my. We have seen in Eq. 4.2 that F transforms
according to the law F* = QF, so satisfaction of the equation e* =¢ requires
that the response function satisfy the equation

e(F,n)=&(QF,n).

This means that F must appear in € in an invariant combination. The simplest
possibility is in terms of C=FTF, but the Lagrangian strain tensor
E =(C-1)/2 is equally acceptable, and will prove more convenient for appli-
cation of the theory. Accordingly, we take

e=8(E,M). 6.1
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Substitution of this result into Eq. 4.31 gives the temperature-response function

; 98(E,n)
O(E,n)=—=—-, 6.2
(E.n) an 6.2)
which is properly invariant. Similarly, we find the objective form
98(E,m)
Ty =prp ——— 6.3
U =PR—p (6.3)

for the stress response function giving the second Piola—Kirchhoff tensor, T.
When Eq. 6.3 is written in terms of the Cauchy stress we obtain the result

%E(E, n)

iy (B, ) = p Fis Fjn —5 = ©4)

6.2 Third-order Stress and Temperature Equations of State

For practical applications it is often appropriate to approximate the internal
energy response function by an expansion in powers of E and n—ngr, i.e., about
the unstressed reference state T=0, E=0, and n =ngr . The expansion is most
useful for description of strong solids such as quartz and aluminum oxide that
can be elastically compressed by a few per cent, and for which a very accurate
description of the slightly nonlinear response is needed. The expansions of
& (E, n) are truncated at the cubic, or occasionally the quartic, term. This results
in polynomial expressions that can very accurately represent small nonlineari-
ties, but do not accurately approximate rational functions such as the pressure
Hugoniot associated with the linear Us —x response that is usually the best
representation of the material behavior at large compressions.

When the expansion is carried out to include third-order terms we have

g(E,n) =er +9R (M-nR)

CIJKLEU Ex~O6r (N-Mr) YU E”+2CE (n-nr)?
1 8Cy 6.5
+—Clnw Ev Ext Emy + ———2% (m-nr)Ey Exr (6.5)
6pr 2pr  Om |,
MR
1 6r ) 1 6r dCE(m) 3
Ey+~ 1~ - .
T2CE —g v (M-Mr)* Ey 6(CE)2[ an g (m-nr)
The coefficients in this equation are defined as follows:
. 08 Or 02%(E, o0 (E,
er =€(0,Mr), Or = — , -5%-= 86(271) = é ) , (6.6a)
0,MR R n 0,MR n 0,MR
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; 1 0%(E, ) 1 08(E, ) 1 0Ty
U= = = |
6 OMOEy |,,, Or OFy PrOR OM |g
(6.6b)
8%8(E, 1) BE(E, )
C? =p —_— R Cn =p PR SOt/ AN .
PR OBy 0Fxe |y, M OBy 0Exi 0B |y

In writing these equations we have assumed that C®, the specific heat at con-
stant strain, is a function of n alone and y, the Griineisen coefficient tensor, is a
function of E alone. These assumptions are made for consistency with the Mie—
Grimneisen theory discussed in Chap. 5. The coefficients C" are called isen-
tropic elastic stiffness moduli of second and third order, respectively, according
to the definitions of Brugger [15]. One can, of course, extend the expansion to
higher order.

When this equation of state is substituted into Eq. 6.3, we obtain the stress
equation of state

oC]
T =| Cpigp +—25E

M—-nr) | ExL + % Crxa Ext Evv
01k 6.7

1 n—mr
—prOr (M-Mr)| 1-= .
PR Or (N nk){ 2 CE ]YIJ

Substitution of Eq. 6.5 into Eq. 6.2 yields the temperature equation of state

N—Mr 1 6CJ“JKL |
O(E,N=0r|1-yy Ey + + Ey E
(E,m)=06r Yu Eu CE " Zpnon om | u Exc

0,nR

(n-nr)? .
oz cH?

‘When the similar expansion is carried out in terms of the Helmholtz free en-
ergy function, one obtains isothermal elastic stiffness moduli. Expansions of the
enthalpy or Gibbs functions give the strain in terms of stress and either entropy
or temperature, with the associated coefficients being called isentropic and
isothermal elastic compliance moduli, respectively.

(6.8)

_dCE(w)

1 1
yv (M-Mr)Ey +5[l n

_@

In Chap. 5 we showed that the entropy jump at a shock propagating in an
inviscid fluid was proportional to the cube of the jump of the pressure or specific
volume. This result is also obtained for a thermoelastic solid, which means that,
when the specific entropy is held constant, Eq. 6.7 can be interpreted as a
Hugoniot as well as an isentrope.
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Because of the symmetry of T and E, the stiffness tensor Cj., is invariant
to interchange of indices of the first pair, the second pair, or both and, because
E;; and Ex;, can be interchanged, the first and second pairs of indices can be
interchanged. This motivates introduction of the Voigt notation in which the
stresses are renamed in accordance with the scheme 71y > T, T2 > 732,
T3s > T3, T3 > T4, T3 > 7Ts, and T1; —» T, and the strains are renamed in
accordance with the scheme Eyy —E), Ex > E;, Ess > FE;, 2Ex > Es,
2FE13 —» Es,and 2 Ey; — Es. It is then possible to express the stiffness tensor in
the simpler form CQB , where o and P range over the values 1, 2, ..., 6 according
to the scheme 1151, 2252, 3353, 2354, 135, and 1256, so Eq.
6.7 can be written

oC]
B

1
M-nr) [Ep +5C2ﬁy Ep Ey

0nR 6.9)

n-"nr
~pr O (M- 1- )
PR OR (M nn)[ 2CE ]Yoc

The Voigt notation and Eq. 6.9 have been introduced because many higher-order
elastic coefficients have been measured and the results are usually reported in
this notation, which is further explained in reference [98, p.124]. It is important
to realize that the various quantities are not tensors when in Voigt notation.

In many practical applications, including those of shock physics, it is often
appropriate to approximate the energy equation of state by an expansion such as
that of Eq. 6.7. In this case, invariance of the response to certain transformations
of the reference coordinates is manifest in the structure of the tensor-valued
coefficients C". These tensors have been developed to various orders for all
crystal classes and tables of the results are given in [14,15,98].

6.3 Stress and Temperature Relations for Isotropic Materials

In dealing with practical problems of shock physics, we are often interested in
isotropic materials. To develop specific results for this case, let us consider
Eq. 6.7 using the representation for € given by Eq. 4.20. We have

_1_ =68(1E,]1E,][1E, M) _ 0t Olg Oe Ollg oe Olllg

T =
PR o 6E1,/ a]E 0E]J + 61]]3 6E1J + aI]IE 6E1J

. (6.10)

Differentiating Eqs. 4.19 gives

ol all oIl
E _5u, E =158 ~Ey, E —Ex Exy —Ig Eiy +1Ig 817 ,(6.11)
aEu aEIJ 1J
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which, when substituted into the preceding result leads to the exact representa-
tionof T,

1 Je o
8
pr (51 AT 6111 ] Y
6.12)

de oe de
( 3ll, e g ]E "I, Eix Exs

for the case of an isotropic elastic solid described by an arbitrary specific inter-
nal energy equation of state.

Expansion of this result leads to an expression of the form of Eq. 6.7 that is
appropriate to isotropic materials. An expression for £ that is accurate to cubic
terms in E and n—-nx is

PrRE=PrER +Pr OR MN-NR)
+3(r +2pr) I ~2pr [ ~Pr Ok YR(M-"R) [

PR Or

+
2CE

(n-Mr)? +L(vi +6v, +8v3)Ip-2(v2 +2v3)Igllg

1| OM(E, )

on

+4v3llly +—
2 on

Ui —2111;)1(11— MR)

0,MR 0,nR

Lpx6x [, dCP(n)

27
p: (Cg)zl an YR(M-"Mr)“/E.

R OR
3 _
}(ﬂ nR)” - 2CE

|0,nR
(6.13)

The stress equation of state that follows from Eq. 6.13 is
Ty =Ar Igdy +2uR Eiy —pr OR YR(M—MR) dis

+%(V1 +6v2+8v3) 38y —2(va+2v3) g by

=2(v2+2vi)Ig (g 8y —Ey)+4vs(ExxExs —Ig Eiy + 1l 81s) (6.14)

{axm |, nE )

Igdy (N—Mr)
61’] |0 LMR an !O,nnjl

+5|u(E, n
on

R Or
X yr(M-MRr)*8w,

Ey(m-nr )— 2CE

0,nR
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and the temperature equation of state is

N—Nr N—NrR
O(E,m)=0r| 1-vr g + - I
(E,m) R[ YR {E CE YR CE P

1 [67»(1*3, ) PR

1% —1Ig) (6.15)
2pr Or an lO,nR an ( E E )

0.MR

B
L1, dctm
2 dn

(n-nr)?
x| (CH)?

The coefficients in these equations have been written in a form that identifies
those of the quadratic energy terms with the usual Lamé coefficients Ar and
ur and the coefficients vi, vz and v3 with the third-order Lamé coefficients
defined by Toupin and Bernstein [101]. It is important to note that the lowest-
order terms of these equations do not correspond exactly to the expressions used
in the linear theory of thermoelasticity because E is not linear in the displace-
ment gradients. To recover the linear theory one must replace E by its linear
approximation

By =L Qv Ou ) (6.16)
ax,- ax,-

where we have identified the material and spatial coordinates since the distinc-
tion disappears in the approximation of small deformation, and where we also
have t=T in this approximation, leaving us with the resulting linear expression

tj =Ar Eu Sij +2uR Ej —pPRORYR(M—NR) Dy

9=6R{1—YRIE+%}. 6.17)
Adopting the definition of the deviatoric strain,
Ey=Ey —%Ekk By, (6.18)
we can write Eq. 6.17; in the form
ty=[(Ar +2 1) Bu - pr Or YR (M=) 8 + 2pix 557, 6.19)

in which the first term gives the pressure (the coefficient Ar +(2ur /3) is the
isentropic bulk modulus) and the second gives the shear stress.
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Uniaxial Motions. Uniaxial motions have been discussed in Sect. 2.2. In some
cases the principal stress components associated with these motions are along
and transverse to the axis of motion. This occurs in isotropic materials and in
some materials of lower symmetry if the axis of motion is suitably chosen. It
does not occur for all orientations or all materials, but Brugger [16] has deter-
mined the cases where pure longitudinal motion is possible. When such motions
are possible, Eq. 6.9 yields the isentropic stress relation

T =Cl} En +3C1 (En)® - prOr yr(M~1R)

acy\ (6.20)
+ ——|

0
En(n—nR)+pR 2
on

R 268

YR(M=-"1R)?,

where the elastic moduli are in Voigt notation. Substituting this result into
Eq. 2.64, and using the kinematical relations for uniaxial motions, gives

m=Tn Fn=C,] En Fi +%C1?, (En)? Fii-pr O yr Fil(M—MR)

oC 0
+ 0 En Fum-me) + 2Ry Fi(n-mr)?
n 0 2CR
LNR
=C)) Ux —pr Or YR (N—Mr)+1GC) +C) Ux )? (6.21)

och
-prROR YR Ux (TI’TIR)+—5;]— Ux (n—-mr)

R

pr Or

+_....___.
2CE

YR(M-MR)?.

It is important to recognize that, even though the motion is entirely along one
axis, there are nonvanishing transverse stresses. These stresses play no role in
the analysis of longitudinal elastic waves, but are important for analyzing the
vield phenomena that are the focus of analyses of elastic—plastic waves.

6.3.1 Separation of Dilatation and Distortion

In the preceding chapter we pointed out that a solid body can support a large
pressure but fails by some mechanism of inelastic flow when subjected to a
relatively small shear stress. This suggests that we separate the deformation into
dilatational and distortional parts and simplify the distortional part by introduc-
tion of the approximations that can be made when it is small. Preparatory to this,
we perform the separation, but without incorporating the simplifications that re-
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sult when the distortion is small. We proceed by analyzing the deformation as
though it resulted from a dilatation followed by a distortion. This process is
illustrated in Fig. 6.1.

e

Figure 6.1. Schematic illustration of a deformation resulting when a distortion, F* , is
superimposed on a dilatation, FV .

The isotropic dilatation from the reference state to the intermediate state is
described by the equation

Ea=Ea(X), (6.22)

and the isochoric distortion from the intermediate state to the current state is
described by the equation

xi =% (&), (6.23)
so the total deformation is given by
x =% (E(X)). (6.24)

Calculation of the deformation gradient using the chain rule gives

Fi=Fg F,, (6.25)
where
E5, =§fi§_) and Fy; —_-QEE_(_)Q. (6.26)
Ot o0X;
Since &(X) is to represent an isotropic dilatation, we have
Ea =(v/vR)"? Bar X1, (6.27)
and, therefore,
Foy =(w/ve)'3 8ar. (6.28)

The intent of the decomposition of Eq. 6.25 is to form the parts so that FV
captures all of the dilatation and that F* is a pure distortion. Since, by Eq. 2.23,
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the determinant of F is the ratio of current to reference specific volumes, we
have

v/vr =det(F*FV)=detF*detFY = (v/vr )detF*. (6.29)
We see that detF* =1 and, therefore, F* represents a pure distortion.
The components of the Lagrangian strain tensor E can be written
Ey =L (FaFy -3y)=1[(v/v)*PF;, F8ardps-81s].  (6.30)

If we define strain tensors associated with F¥ and F*® in the same way, we
have

EY sLFYFY -8u)=1[w/vr)¥3-1]8y, (6.31)

and

ap =7 (Fa Fig —8ap). (6.32)
Equations 6.30 and 6.32 can be combined to give

Ey =]7[(V/VR)2/3 ~1] 8y +(v/vR)2/3E;B Ot Ops . (6.33)

Evaluation of the invariants of E according to Egs. 4.19 yields the result

Ig=3(A-1)+Als
g =3(A-1)? + A(A-DIs + A%l (6.34)

g = %(A -1} - %A(ZA -DIs - -'Z-A s,
where

A=(Ive)¥3, Is=Edy, and IIs=1(Z-ELES), (6.35)

with /s and /s being the first and second invariants of E*. The third invariant
of E, Eq. 6.34;, was obtained from the equation

(v/v)? =1+2Tg +41Ig +811%, (6.36)

which is easily proven for the case that E is diagonal, with the general result
following from the invariance of the equation.

For the analysis of a deformation decomposed into dilatational and distor-
tional parts, as has been done here, it is appropriate to replace the invariants /g,
IIx, and Il by the equivalent set of invariants, 4, Is, and //s that are related
to the first set by the equations

A={1+21% + 41 +81Ig | (6.37a)
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3(4-1) 1 3(4-1) 1
Is=—> A2 |4 2ppls = -2 222 |4 2
® 2(,4),4“ Z(A)AE
(6.37b)
3(A-1) A-1 1
Os=2222 2 e+ —1IIs.
s 4(,4) VERR e

Stress and Temperature Equations of State. The stress equation analogous to
Eq. 6.10 can be written

1 _0e(4,1s,lIs,m) 0 0A N oe 0Is os Olls

—Tu + , (6.38)
PR OEy; &4 0E;; Ols OEr; 01ls OEL
and the Cauchy stress components are given by
P v )3
i=— Iy Fy Ty = (—-———) Fzsoc F;B Ber Ops T . 6.39)
PR VR

With a view toward eventual restriction to small shear strains, we shall con-
sider the case in which €(4, Is, IIs,n) is quadratic in /s, and /s, leading to
derivatives that are linear in these invariants. Accordingly, we have

(4, Is, lIs,n) =e1(A) +e2(A) Is +83(A)152 +84(A) s (6.40)
.40
+es(AD(M-nr)+es(A)Is (M-Nr) +e7(A)(n-Nr)?,
and the stress equation of state is
Oe

1
Ty == =[&§(4) +85(A)]s +e5(A)IZ +4(A) I
PR OEy

+9’5(A)(TI—T\R)+9'6(A)IS(TI—ﬂR)"'S!I(A)(ﬂ—TIR)Z]B%% 6.41)

ol olls ols
+g4(4 +¢g6(A4
agy e Do, e o,

where the primes designate differentiation with respect to 4 and where

0A
oE

+e2()+2e3(A) s ] (M-Mr),

2 4 8
=§(1+2ls +41l5)01 —-—3—(1+215)E;B8w dps +§E§y E;BSM dps

dls
OE

2
=§;4-[—2(21s +12 +31s +21s1Is)8y

+(3+817s +4152)E;[38w Sp —2(3+21s)ESy ESyBu SW]
(6.42a)
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olls
oEy

- -i_[ (13 +81s IIs +21Ts +811})8y

+(1=21s =413 ~ 4115 =815 II5)EZy ea S (6.42b)
+4(Is +2115) By E3gdor 301 |

The temperature equation of state is
0=ge5(A)+es(4A)Is +2e7(A)(Nn—-MRr). 6.43)

Uniaxial Deformation. The foregoing analysis is easily specialized to the case
of uniaxial strain, for which only the diagonal components of the deformation
gradient are nonzero,

F=diag| v/, 1, 1], (6.44)
and the only nonzero component of the Lagrangian strain is
En=1(F -D=1[(w/vr)*-1]. (6.45)

As in the general case, this deformation can be decomposed into the dilata-
tion of Eq. 6.28 and the isochoric distortion

Fe =diag| (v/ve) ¥, (v/ve) ™2, (vive) 3. (6.46)
The Lagrangian strain associated with this deformation gradient is
E* =diag| L[(v/ve) ¥ -1], 1[(/vr) 2 -1], L[(w/vr) 2 -1] . (6.47)
When |[(v/vr)-1]« 1 Eqgs. 6.46 and 6. 47 take the approximate forms

F* =diagn 1-2(w/vr), 1+1(v/vr), 1+1(v/vr) | (6.48)

and
Es =diag|| —2{1-@/ve)l, H1-/ve)], H1-(/ve)] || (6.49)

6.3.2 Finite Dilatation Combined with Small Distortion

In the previous section we addressed decomposition of the deformation into
dilatational and deviatoric parts, but we have not yet introduced the simplifica-
tions that can be made when we omit all but the lowest-order terms in ES . We
shall now proceed with this process. Note that states of finite dilatation com-
bined with small distortion do not arise in cases of uniaxial elastic strain because
the dilatation and distortion are related almost linearly.
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When the shear strain is small we can write E* = E® and neglect quadratic
terms in E* . The criterion that E* be a pure distortion is not trE® =0 as in the
linear theory but we recover this condition when quadratic terms are neglected.
When E* is replaced by E* and the quadratic terms in I/s are neglected, the
invariants /s and I/s both vanish. Introduction of these approximations into
Eqgs. 6.42 yields the simpler equations

84 2 ~

3EL = -5( Sy — 2E;B dot 8{3_1 )

ols 2

aE,SJ = ZE;‘, ot Sp (6.50)
oIl 1~

oy = L dea B

When Eqgs. 6.50 are substituted into Eq. 6.41 and quadratic terms are ne-
glected, we obtain the simplified stress and temperature equations of state

1
—Ty =€1(4,M) 8y +£%2(4, n) op S O
PR (6.51)

O=ges(4A)+2e7(A(M-MRr),

where

£3(4, n)=§[si(A)+e's(A)(n—nR)+e'7(A)<n—nR)2]
8*2(14,11)=—%[Si(A)+8'5(A)(T\‘11R)+8'7(A)(ﬂ*nR)z] 6.52)

+;11_[282(A)—84(A)+286(A)(71—T1R)]-

The Piola-Kirchhoff and Cauchy stress tensors are related by Eq. 6.39.
Since this equation involves the deformation gradient F*, we need to determine
the form of this deformation gradient when E* is small. The complication is
that, even though E*® is small, F* may involve a finite rotation. Equation 2.9,
which we write F;, = Rip Ug, , leads to the equations

Eqgp =3 (Fig Fig —8ap) =3 (Riy Uya Ris Usg = 8ap) =+ (Uya Uys —Bap)  (6.53)
for E° . When we restrict attention to small strains, we have

Usp =8up +EZp ++-, 6.54)
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as can be verified by substituting this expression into Eq. 6.53 and discarding
the quadratic term in E® . With this, we have

F = RiyUsy = Ria+Riy Ego ++-+. (6.55)
Substitution of Eqs. 6.51 and 6.55 into Eq. 6.39; yields the equation

~. -l
i =pr(v/vr)"? [ST (4, )3y +[261(4, M) +£2(4, WIREG R ij| (6.56)

for the Cauchy stress accurate to first order in Es. This equation is of the form

L=t~ pdy, (6.57)
where t' and p are the pressure and the deviatoric stress, respectively.

The pressure can be calculated from a suitable equation of state as discussed
in Chap. 5. The coefficient of the stress deviator,
~, -l
ty=pr(v/vR)? [261(4, M) +&2(4, WRiaE s Rpj (6.58)

is usnally designated 2 p, so we have
pr (v/vr)™? [2€1(4, M) +£2(4, W] =20, M) . (6.59)
In states of uniaxial strain Eq. 6.58 becomes
ty=2p(v,ME;, (6.60)
when Eq. 6.59 is used. When we also use Eq. 6.49 this becomes
t'=2p(v,n) diag“ =2[1-@/vR)l, 31-@/vr)], $[1-(v/vR)] " . (6.61)
Steinberg et al. [91] have developed the equation
RV, 0) = pr [1+p1 (v/vr)'? p(v) + 12 (8- 6Rr)], (6.62)

for the shear modulus as a function of specific volume and temperature, and
have provided values of the coefficients p; and p» for several materials. The
temperature in this equation can be replaced by a function of specific volume
and specific entropy by use of Eq. 6.51,.

It is useful to note that the internal energy equation of state used in develop-
ing the foregoing stress relations can be replaced by the specific Helmholtz free
energy equation of state, in which case the equations all have the same form
except that the elastic moduli become isothermal moduli, the various coeffi-
cients depend on the temperature instead of the specific entropy, and the thermal
terms are somewhat altered.
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6.4 Exercises
6.4.1 Show that (v/vr)'? =1-1[1-(v/vr)]+O[1-(v/wr)]?.

6.4.2 Write out the third-order expansion of €(E,n)and show that it can be
placed in the form of Eq. 6.5.

6.4.3 Two of the coefficients of terms in Eq. 6.5 involve derivatives with
respect to specific entropy. How can these coefficients be replaced by coeffi-
cients that involve derivatives with respect to temperature?

6.4.4 Show that Ry =8y for uniaxial deformations.

6.4.5 Derive Eq. 6.56.

6.4.6 Show that the Hugoniot and isentrope differ by cubic and higher terms in
the volume jump at a weak shock propagating in a thermoelastic solid.



CHAPTER 7

Material Response IV: Elastic—Plastic
and Elastic—Viscoplastic Solids

Most solids exhibit elastic response only within a narrow range of stress or
strain. Materials respond elastically to large compressive forces if they take the
form of a uniform pressure, but their resistance to shear stress is limited. When
ductile solids such as soft metals are subjected to shear stress, they can be se-
verely deformed without fracturing, but they do not recover their original shape
when the applied stress is removed. It is this response, plastic deformation, that
is the subject of this chapter. Its investigation necessarily involves consideration
of elastic response, and the theory is more complicated than that of elastic re-
sponse alone. The observed phenomena are more varied than elastic responses
and a range of theories is used to capture these phenomena. The simpler theories
capture the observed phenomena in only the most rudimentary way. The more
comprehensive theories capture a broader range of phenomena, and/or capture
the more basic observations with a higher degree of fidelity, but this is accom-
plished only at a cost in complexity. The simpler theories are based upon the
premise that the material response is independent of the rate of deformation, but
rate effects are commonly observed and are captured by the more comprehen-
sive theories.

The subject matter of this chapter differs from that of those preceding be-
cause theories of plasticity are not in the settled state of the theories of elastic
deformation or fluid flow. As a result, there are many theories of plasticity and
none of them captures all of the responses that are observed when metals are
deformed beyond their range of elastic response. It is difficult to conduct shock-
wave experiments to measure shear stress, which is the quantity controlling most
aspects of plasticity. Examination of ductile metals recovered after having been
subjected to a shock-compression/decompression process reveals that the proc-
ess is very chaotic, which indicates that continuum theories based upon tradi-
tional microscopic descriptions of plastic deformation omit consideration of
many mechanisms of inelastic deformation.

The setting in which elastic—plastic response is most easily observed is that
in which a ductile metal rod is subjected to tension along its axis. When the
applied stress is plotted against the associated strain, a curve such as that of
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Fig. 7.1b is obtained. If the maximum strain imposed in a given test is suffi-
ciently small, the elongation process is reversible (i.e., the curve is retraced upon
unloading) and is described by elasticity theory. When the bar is stretched
beyond some limit (usually less than 0.5 % increase in length) much smaller
stress increments are sufficient to produce a given strain increment, and the
loading curve is no longer retraced when the applied tension is reduced. When
the applied tension is completely removed, some residual elongation, called
plastic deformation, is observed, as shown in the figure. The unloading is
accompanied by an axial contraction of the rod that is described by elasticity
theory based upon strain measured relative to the residual configuration. The
simplest theory of the phenomena described, that of an ideal elastic—plastic
material, corresponds to the stress—strain curve of Fig. 7.1c, i.e., once the bar
has been deformed beyond the elastic limit or yield point of the material it can
be further extended without application of additional stress. When additional
stress must be applied to produce additional strain, as in Fig. 7.1b, the material is
said to exhibit hardening behavior.

Y o e
/
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- /
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Figure 7.1. Stress—strain response of a rod in states of uniaxial stress.

Although we have been discussing plasticity in terms of tensile response, it
is also observed in compression. Both experimental observation and our under-
standing of the underlying mechanism of plastic deformation indicate that
vielding is a shear phenomenon that occurs independently of any superimposed
dilatation to which the material may be subjected. A stress—strain curve is
normally measured in a test conducted at a low rate of deformation
(/L =0.001s7!). When the rate of deformation is increased it is often observed
that a higher value of stress is required to produce a given strain. This response,
called rate dependence or viscoplasticity, can be important in understanding
shock phenomena because of the very rapid deformation encountered in this
context (//L often exceeds 10°s71).

Mechanism of Plastic Deformation. Plastic deformation arises through the
operation of many mechanisms of rearrangement of the microscopic configura-
tion of the material. Most important among them is the motion of dislocations in
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a crystal lattice, although adiabatic shear bands, twins, and other defect struc-
tures also play a role. Even the most careful consideration of the microscopic
mechanisms of inelastic deformation has not yet yielded a theory capable of
producing predictions in detailed quantitative agreement with observations of
the operation of these mechanisms. Nevertheless, knowledge of deformation
mechanisms has motivated development of continuum theories that have been
very effective in modeling observed responses.

Sliding the planes of a perfect crystal over one another requires a very large
shear stress—much larger than a typical yield stress. When dislocations are
present in the lattice, as they always are in all but the smallest and most perfectly
prepared monocrystals (There are many dislocations—10* to 10'° intersect a
typical mm’ area.), shear occurs at much lower stress because the dislocations
can move rather easily. The situation is illustrated schematically in Fig, 7.2,
which shows how one part of a sheared crystal slips over the other in small steps
as a dislocation jumps from one site to the next. It is important to note that
deformation attributable to dislocation motion accumulates gradually in re-
sponse to an applied shear stress. The stress application leads to a deformation
rate as opposed to a deformation itself as in the case of elasticity. As a result,
application of what is known of dislocation behavior to development of a theory
of deformation leads to an elastic~viscoplastic theory. The physical processes
underlying plastic deformation lead to microstructural changes in the material
that result in altered yield thresholds and permanent metallurgical changes.

T

B — R

O00000D00 OO0O0OO0OOO0OO 00000000
0000000 ODOOOODOOO ool eNoNoNoNONe)
090000000 000Q,0000 00000000
OO0 000000 00 O Q000 @O0 0O0OOOOO
Q0000000 0000000 g0 000000
OO0 00O @@0000 0DO0VOe0000 00000000
00000000 D000 0000 @000 OOOOC
OO 000000 D0 0OeC000 @0 0D0OD0O0ODOOC

T
(a) (b) (c)

Figure 7.2. llustration of slip of a crystal due to the motion of an edge dislocation. The
dislocation occurs at the edge of the extra half-plane of atoms shown as filled circles.
When shear stress is applied, as shown in part (b) of the figure, the elastic deformation
causes the bond designated a to transfer to the bond designated b. Through a succession
of such steps, we finally arrive at the configuration shown in part (¢) of the figure. In this
configuration the crystal is unstressed, but a plastic shear has accumulated. The slip plane
is indicated by the dotted line and the Burgers vector corresponds to the offset shown in
part (¢) of the figure.
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7.1 Elastic—Plastic Response to Small Strain

Before undertaking development of a theory based upon dislocation mechanics,
it is appropriate to consider a simple rate-independent continuum theory that
lends itself to detailed analysis of many practical problems [47]. Examination of
solutions based upon this theory offers insight into the effects of wave interac-
tion that are not apparent from either experimental measurements or typical
finite-difference calculations. Waveforms observed in experiments are smoothed
by both dispersion in the material and the temporal resolution of the instrumen-
tation used. Numerical simulations usually involve an artificial viscosity that is
included to smooth the wave so the partial differential equations that describe
the process are meaningful.

Ideal elastoplasticity at small strain incorporates a linear elastic stress—strain
relation and the constraint that the plastic response does not produce any change
in specific volume. It is the simplest model of elastic—plastic response that is
useful for analysis of shock phenomena. The restriction to small strains does not
prove as limiting as one might suppose because elastic—plastic effects are most
pronounced when the strength of a shock is only moderately in excess of the
limit of elastic response. Imposition of this restriction allows us to use the Reuss
theory in which the components of the small-deformation approximation to the
strain (given by Eq. 6.16) are additively decomposed into parts £7 and E§
representing the elastic and plastic contributions, respectively, to the deforma-
tion:

Ey=Es+E}. (7.1

The stress is determined solely by the elastic part of the strain and, since this
strain is small, the linear stress—strain relations are appropriate. For the simple
case of an isotropic solid to which we restrict attention here, the stress and strain
are related by Eq. 6.17 with E; replaced by Eg. Finally, both experimental
observation and microscopic models of the underlying cause of plastic deforma-
tion of metals justifies the approximation that there is no volume change that is
attributable to the plastic part of the strain, a condition that can be written in the
form

ER =0. (7.2)

We postulate that yielding occurs when some critical state of stress is
reached. For example, when a rod is subjected to increasing tension along its
axis, a point at which yielding occurs is eventually reached.* This stress is a
material property called the yield stress, Y, and the criterion for yielding in this
configuration is simply that the applied stress reach the yield value. To develop

* Brittle materials that fracture before yielding are not covered by the theory of plasticity.
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a theory of plasticity, we begin by generalizing the foregoing yield condition to
arbitrary stress states.

In the example of stretching a rod along the x; axis, the only nonzero com-
ponent of the stress field is #; and the yield condition is

m=Y. (7.3)
In general, we consider a yield condition in the form
f(®)=0. 74

Yielding is a shear phenomenon and, as a measure of shear stress, we adopt the
stress deviator tensor having components

ti=ti+ pdij (7.5)

obtained by eliminating the mechanical pressure p, given by Eq. 2.57, from the
total stress. Yielding is assumed to depend only upon ¢’ ; the pressure plays no
role. Accordingly, the yield function f depends only upon t', and we can write
the yield condition in the form

~

S)=0. (7.6)

Since we have restricted our considerations to isotropic materials, f” must be a
function only of the invariants of t' under orthogonal transformations. It is
customary to select as invariants

Ji=tha, Jh=1tth, Ji=thit thi . (7.7
By definition of t', we have J{ =0, so the yield function takes the form

75, I8 =0. (7.8)

When we discussed extension of a rod, we saw that yielding occurred when the
tension reached a critical value, Y. When yielding occurs under compression at
the same stress magnitude, the yield criterion can be generalized to |f11 =Y.
We assume, more generally, that the stress magnitude at which yielding occurs
is unchanged as t' — —t’ . This means that f(J5,.J5) must be an even function
of J4. Two yield functions that we shall consider are the Tresca criterion and
the von Mises criterion.

According to the Tresca criterion, yielding occurs at a material point when
the maximum shear stress at that point reaches a critical value (the shear stress is
evaluated on a plane through the point, and the maximum is taken over all
directions on all planes through the point). This criterion is the continuum
analog of the yield criterion that arises from the interpretation of yielding in
terms of the motion of lattice dislocations. When written in terms of the princi-
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pal deviatoric stress components, the magnitudes of the principal shear stresses
are |f1—12|/2, |ti-13|/2,and |£2 —¢5]/2, and the maximum shear stress is

For the bar, we have

Trmax =% [fn] . (7.10)
At the yield point,
Tmax =Y /2, (7.11)
so the yield condition becomes
max[|d - |6 -85, -8]]-Y =0, (7.12)
or, equivalently,
max[|t -}, 16 -8l 2 -1:1]-Y =0. (7.13)

The Tresca criterion can be written in terms of J% and J3, but the result is
complicated and is not needed for our work.

The von Mises yield criterion,
Ji-1r?=0, (7.14)

is the simplest acceptable function of the invariants of t', is in reasonable
accord with measured responses, and closely approximates the Tresca condition.
Since yielding is a consequence of shear rather than tension or compression it
may be of interest to express Eq. 7.14 in terms of the maximum shear stress
corresponding to the tensile yield stress ¥ measured in a uniaxial stress test. In
this case, we have Tmax =Y /2 so the von Mises yield criterion can be written

Jh - 41dn =0,

The yield stress is usually observed to increase as the material is deformed.
This increase can be correlated with the plastic strain, in which case it is called
strain hardening, or with the work done in producing the plastic strain, in which
case it is called work hardening.

The remaining ingredient required to make a theory of plasticity is a flow
rule, an equation relating the part of the strain rate attributable to plastic defor-
mation to the stress. A flow rule is not needed for analysis of uniaxial shocks
using the theory of this section, but a brief account is included for completeness.
Because the plastic part of the deformation is isochoric, EP is a deviator tensor
so the strain rate EP /0t (which is the same as dP in the limit of small defor-
mations) is also a deviator tensor. Therefore, we are led to adopt a flow rule of
the form
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YAl 7.15
Y ij (7.15)

where A is a function to be determined. If we multiply each member of Eq. 7.15

by 4 and contract, we obtain the equation

~p
1

oF
oty = Aty Ly =203 (7.16)

The stress power, tr(td), associated with this deformation is

oE;  OE;  OEp
ty = tij

PV = or o 0T atv ty =pr W< +pr WP, (7.17)
where
. Fc . QEP £
prRW® = 6: tiy and prW?P= a: liy '—'%t{f (7.18)

are the contributions of the elastic and plastic parts of the deformation. The latter
is often called the plastic working. Since t;; = ti; — pd;; and E5 =0 we have
oEF  OEF oE}

pr WP = = ,,,=_6.;L(t;j_ ps,,.)=a—;ft;,-. (7.19)

When the last of Eqs. 7.19 is substituted into Eq. 7.16 and the result solved for
the function A, we have

1 OE} ;. _ PR W

A = if = N 7.20
25 ot 0 2Jb (7.20)
so the flow rule, Eq. 7.15, becomes
OF; W
i _PRY 4 (7.21)
ot 2J3
The linear elastic stress relation can be written
o) SR SN ) (7.22)
T 3hr42ur . 2pr '
so the elastic part of the strain rate is given by
aE‘i‘? ’
_ L Ops 1 o4 (1.23)

ot 3Ag+2pr Of | 2ug ot
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When the spherical and deviator parts of this equation are separated, we have

3
L 7.24
37\-R +2}LR P ( )
and
k' '
- _.1_%4_ , (7.25)
ot 2ur Ot
where

E; =E; -193;,

and 9 = Nk‘; is the small-strain approximation to the dilatation. Adding Eqs 7.21
and 7.25 yields the result
OEy _ 1 oty  prWP
ot 2ur Ot 2J3

i, (7.26)

and Eqgs. 7.24 and 7.26, together, form the constitutive description of the ideal
elastic—plastic material at small strain. It is important to note that, despite the
appearance of time derivatives in this description, Eq. 7.26 is homogeneous in f
so the response is actually rate independent.

Small Uniaxial Deformation. Let us now consider the uniaxial deformation
discussed in Sect. 2.2. Since the problem is set in principal coordinates, the off-
diagonal strain components vanish. The definition of uniaxial deformation
implies that the lateral components of strain also vanish:

En=FEx=0. (7.27)

By symmetry, the two in-plane components of each of the variables are equal, so
we need only give results for the x2 components.

It is the purpose of this section to specialize the foregoing constitutive equa-
tions to this deformation so they will be available for analysis of propagation of
a plane shock in an ideal elastic—plastic solid.

Range of Elastic Response. In the elastic region the total strain F?U and its
elastic part E,-j- are the same. According to Eq. 6.17, the nonvanishing stress
components are

AR

=R +2pR)ES, M=ty =ArES=—"% .  (1.28)
AR +2uR

The pressure is

3Ar +2pr

e Lty = (g + ) B = SMRF2HR
p=—3te =—(Ar +SHR) E} 30 + 258 11

(7.29)
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and the nonvanishing stress deviator components are

, __ 4pr 2pr

=— " —f, and tpr=fH3=—-———-——M (7.30)
3(hr +2pR) 30k +2pR)
Finally, the maximum shear stress is
—‘C4s°=—%(t11 —In)=- MR gy =—pr £, (7.3D
)\’R +2 %573

and is, as the notation suggests, the shear stress present on planes lying at 45° to
the x axis.

The Tresca criterion gives the yield stress as

=t =ty (7.32)
where the definitions
1B __.)“R_+2’J'_R_Y, (FEL E}“_RY , (7.33)
2ur 2uR

have been introduced in anticipation of application of these results to the analy-
sis of shock-propagation problems. The superscript HEL stands for Hugoniot
Elastic Limit, and is the state on the Hugoniot curve at which yielding begins. In
this case, as in the case of the bar, a simple calculation shows that the von Mises
and Tresca yield criteria give the same result (although this is not true for all
stress fields).

Range of Elastic—Plastic Response. In the plastic regime we have the usual
elastic stress relations but, in contrast to the analysis of the elastic regime, E°
no longer the total strain. The stress relations are

f1=(Ar +2pR) ES 420k By, t2 =ARE+2(hr +pr) By, (7.34)
which we use in the equivalent form

e (AR + PR )1 — AR I Fe - —Ar i1 + (AR +2uR) I22
" uR BAr +2pR) 2 2ur GAR +2HR)

(7.35)
The axial and lateral strains are each made up of both elastic and plastic

parts, as given by Eq. 7.1. The lateral constraint takes the form
E,=En+E} =0, (7.36)

and the condition that the plastic part of the deformation be isochoric is ex-
pressed by the equation

Ef +2E} =0, (7.37)
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From Eqs. 7.35,, 7.36, and 7.37 we obtain

~p —ARH1+(AR +2UR)I2 ~p Arfn —(AR +2UR)I2
E;= s = (7.38)
R (BAR +24R) 2ur (3AR +21R)
Finally, the yield condition
[t —t2 |=Y (7.39)

must be satisfied in the plastic regime.

The five equations 7.35-7.37 and 7.39 can be solved for any five of the un-
known quantities 1, tn, £, £}, E;,, and E,, once the value of the
remaining unknown is given as a measure of the stimulus producing the defor-
mation. Let us assume that #; is given. There are several cases to consider,
depending upon the history of deformation that the material has experienced.

Let us suppose first that a stress, #11, is applied to material that is unstrained
and at zero stress. To determine the sign of #1; — £, in the plastic range it is only
necessary to evaluate Eqs. 7.34 at the yield point, at which £5, =0 . This gives

m=(Ar +2},I.R)Ele], n =Ar Elel . (7.40)

In tension, where f«fﬁ >0, we have f11 >t >0 so that f; —f; >0 and the
yield condition is
h—tr=+Y. (7.41)

In compression, where £ <0, we have f1; <z <0 so that £;; — 49 <0 and
the yield condition is

h—fn=~Y. (7.42)
These cases can be combined by writing Eqs. 7.41 and 7.42 in the form
th—tn=yY, (7.43)

where

L
[ |

+1 intension
(7.44)

-1 incompression.

We can now use the yield condition 7.43 to express f»; in terms of f;. We
obtain, from Eqs. 7.35 and 7.38,

=e _ MRIN+YARY 7o - 2ur 1 =% (AR +2pR)Y
"7 R BAR +2pR) 2 2pr AR +2R)

P = 2pr i~y (AR +2pR)Y Fp - Z2uRf + 1R +2pR)Y
PR GAR +21R) 2ur (3R +24R)

(7.45)




7. Material Response IV: Elastic—Plastic Solids 145

The total uniaxial strain is

~ 1 2
Bu=—{tm+2yr ]|, 7.46
1 BR(“ 3)(, ) (7.46)

where
Br =Ar +1pg (7.47)
is the bulk modulus of elasticity. Equation 7.46 can be solved for #; to yield
ty=BrEn+2yY. (7.48)
Substitution of this result into Eq. 7.43 gives
ta=BrEn-1yY. (7.49)

The specific volume is given by rE = (v/vr) -1 but, since Ex =Fs3 =0, we
have Eij1=@W/vr)-1 and Eq. 7.48 can be written in another common and
useful form

fn=Br [(v/vr)-1]+2yY . (7.50)

We recall that all of these relationships are valid only in the plastic range, which
is defined by either of the relations

wEn>ENEY oy > (7.51)
where we adjoin the definition
EMNEE = T (7.52)
2UR
to the yield-point definitions of Eqs. 7.33.
Using Eqs. 7.34—7.37, and 7.1, we can show that
22 = L[ GAr +20n2) B =t ), (7.53)

a useful result that holds in both the elastic and plastic ranges. Substitution of
these uniaxial fields into Eq. 7.26 shows that it is satisfied in the range of plastic
deformation.

Figure 7.3 shows stress—strain paths for an ideal elastic—plastic solid subject
to uniaxial deformation from a state of zero stress and strain. The dotted line
marked p is given by the equation p=[Ar +(2pr /3)]511 and represents the
contribution of pressure to the total stress. The solid line represents the longitu-
dinal stress component, given by the equation f;1 =(Ar +2ur)En in the
clastic range and by Eq. 7.48 in the plastic range. The broken line represents the
lateral component of stress, and is given by f22 =Axr Eyn in the elastic range and
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by Eq. 7.49 in the plastic range. When the material is loaded beyond yield in this
way it is said to be in a state of forward yield.

At points below the yield stress, all of the strain is attributable to the elastic
response of the material. Beyond the yield point, the elastic contribution to the
total strain is the sum of the total strain at the yield point and the strain attribut-
able to the increment of pressure beyond the yield-point value of this quantity.
The remaining strain is attributable to plastic flow of the material.

Figure 7.3. Stress—strain curves for an ideal elastic—plastic solid subject to uniaxial
deformation from a state of zero stress and strain.

It is also important to determine the stress—strain paths followed upon
unloading, reloading, etc. All of these responses play a role in the analysis of
elastic—plastic wave propagation. Let us consider unloading from a stress state
t® to the state f; =0. The initial part of each stress—strain path is an elastic
load release. This process is described by the elasticity theory that we have been
using, with all of the deformation being associated with the elastic part of the
strain. In this simple one-dimensional example it is easiest to follow the process
graphically.

The state point defined by £, moves toward zero stress and strain along a
line having the same slope, Ar +2pr, as the elastic loading process. As the
state point crosses the pressure line there is a reversal of shear stress direction
but the point continues to move along the same path until this reversed shear
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stress reaches the yield value. At this transition, the state point moves along the
yield surface, i.e., along a line having slope Ar +(2ur /3) in the stress—strain
plane. This line intercepts the F;; axis at the appropriate one of the points
En =)(,Ell} =2y Y/(3Br) defining the states of residual plastic strain. The
stress component f;; also changes during the decompression process, following
the path indicated by the arrow on the broken line in Fig. 7.4. It is important to
note that f; does not vanish when the unloading of the faces of the slab is
completed. A residual in-plane stress is required to maintain the constraint of
uniaxial deformation.

-tn @) -t
—t22 ~t22

~(4 ~
_.Efl') -En

(@ (b)

Figure 7.4. Stress—strain paths for decompression (from state 2) of a laterally-restrained
slab that is subject to a uniform normal compression. Part (a) is for the range,
#EL <« — (D <24 | in which the decompression is entirely elastic. Part (b) is for
— £ > 278 | the range in which decompression involves both elastic and plastic
st~rains. Solid lines refer to —#; and ~broken lines refer to —#2. The quantity
ER =2Y /(3B) is a material property but E{*’ is a function of #{? .

We shall call a yield condition reached by loading from zero stress and strain
a forward yield point and the material states reached by continuation of the
deformation beyond this point states of forward yield. A yield point reached by
an unloading process is called a reverse yield point and states achieved by
continuation of the deformation beyond this point states of reverse yield. In all
cases, a loading or unloading process that has been interrupted can be resumed
(loading continued in the same direction as before the interruption) without
affecting the stress—strain path followed. Unloading from any state of forward
yield (such as state A in Fig. 7.5a) begins with an elastic deformation and, if it
proceeds beyond the reverse yield point (defined by the criterion 11 —f22 =+7Y
cf. Eq. 7.42), continues as a process involving both elastic and plastic deforma-
tion, as discussed previously. Both loading and unloading of material in an
elastic state (such as state B in Fig. 7.5a) begins as an elastic process and, if it
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proceeds beyond a yield point, continues as a process involving both elastic and
plastic deformation. When material is in a state of reverse yield, as illustrated by
state C on Fig. 7.5b, further unloading is simply a continuation of the first part
of the unloading. Reloading from state C is an elastic process until it reaches the
forward yield point, after which it proceeds as with the initial loading,

Although the foregoing discussion concerned deformations in the compres-
sive quadrant of the stress—strain plane of Fig. 7.3, the same principles apply to
analysis of deformation in the tensile quadrant, and similar results are obtained.

-t -

-122 -

-E“ "E~ll

Figure 7.5. Stress—strain curves illustrating unloading and reloading processes. State A
is one of forward yield, state B is in the elastic range, and state C is one of reverse yield.

7.2 Elastic—Plastic Response to Finite Uniaxial Deformation

The foregoing theory of ideal plasticity can be extended to allow finite deforma-
tions. In the general case, the theory becomes quite complicated, but a version
restricted to uniaxial strains is not significantly more complicated than the
small-deformation theory and is widely used in analyses of shock phenomena.

The kinematical description of finite elastic—plastic deformations follows
the course set forth in Chap. 2, except that we must augment this description
with a decomposition of the deformation into parts attributable to elastic and
plastic responses. We shall view this decomposition as one in which elastic and
plastic deformations occur sequentially. We shall also decompose the elastic
part of the deformation into deviatoric and distortional parts, which leads to the
sequence of configurations shown in Fig. 7.6. We suppose that the body is
unstressed and undeformed when in its reference configuration, X, and is de-
formed plastically to another unstressed configuration, X". This is followed by
an elastic deformation to the current configuration, x.
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Figure 7.6. Configurations used to analyze finite elastic—plastic deformation of a body.
(a) Decomposition of the deformation into elastic and plastic parts. (b) Decomposition of
the elastic part of the deformation into dilatational and distortional parts.

The configuration X' is a fictitious local state in which the body is plastically
deformed but not stressed. The current configuration, x, is one in which the body
has experienced both elastic and plastic deformation and is stressed. The motion
taking the reference configuration into the current configuration is, as in
Chap. 2, x; =x; (X, ). This is decomposed (locally) into a transformation FP
taking the material from the reference configuration to the intermediate plasti-
cally deformed but unstressed configuration, X', followed by a transformation
F° taking the material from the X configuration to the current configuration, .
The elastic deformation F¢ is decomposed as in Sect. 6.3.1 into a deformation
FV in which the material has experienced dilatation but not shear, followed by a
deformation F* representing the clastic shear. The deformation gradient can be
calculated in the form

Fy =F} FF, (7.54)

where
Fi=EFF}. (7.55)

io
We see that, for finite elastic—plastic deformations interpreted as above, the
decomposition is multiplicative rather than additive as it was for the small-
deformation theory. The decomposition of Eq. 7.55 is introduced because the
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distortion is usually small and separating it from the dilatation allows us to take
advantage of the simplifications that result when we retain only linear terms in
the elastic shear strain.

As for small deformations, we require that the plastic contribution to the fi-
nite deformation be isochoric so that

detF? =1, (7.56)
and all of the dilatation is represented by F . Therefore, F¥ =(v/vr)!/3 1.

A yield condition and a flow rule are required to complete the theory. The
yield condition can be the same as for the small-deformation theory. The flow
rule is more complicated, but is not needed for analysis of uniaxial deformations
of materials exhibiting a rate-independent response. We shall consider the flow
rule in Sect. 7.3.

Let us now consider the case of uniaxial deformation, for which
x=x(X,1), x2=X2, and x3=X3. (7.57)
The only nonzero components of the deformation gradient are
FL=F1=0x(X,n/0X and Fr=Fp=Fn=1. (7.58)

The reference, intermediate (plastically deformed), and current configura-
tions are illustrated in Fig. 7.7. In the intermediate configuration the thickness of
the body is decreased but the lateral dimensions are increased in the amount
required to maintain the volume unchanged. In the current configuration, the
body has the same lateral dimensions as in the reference configuration, reflect-
ing its state of uniaxial deformation, but its thickness differs from that in the
reference configuration because of the elastic volume change. As discussed in
Sect. 2.2, this deformation also involves shear of the material. There is one other
point: Since the only restriction on the intermediate configuration is that it have
the symmetry described and be of the same volume as the reference con-
figuration, it is arbitrary to within a rotation. In the present case we suppose that
no rotation occurs, SO we can write

Fr =diag|FP, FP, AP | and Fe=ding|Fy, P Fe |, (7.59)
where diag||---|| designates a diagonal matrix having the indicated components
in the 11, 22, and 33 positions, and where we must have

det FP = FP(FF)2 =1, or Ff =(F?)™2. (7.60)

The deformation gradient, F, takes the form of Eq. 7.58 if
Ff =(FN)V?, (7.61)
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reference intermediate current
configuration configuration  configuration

Figure 7.7. Configurations used to analyze finite elastic—plastic deformation of a body
in states of uniaxial deformation.

Substituting Eqgs. 7.60 and 7.61 into Eqs. 7.59 yields

Fr =diaguFLp, (FLP)-I/Z, (FLP)—1/2

| , (7.62)

and
Fe=diag|

FLe, (FLP)UZ, (FLP)I/Z ” (7.63)

We sce that FP and F° can be expressed in terms of the two longitudinal
components F° and F°.

Small Elastic Distortion Combined with Finite Dilatation. We now intro-
duce the simplifications that result when the elastic shear strain is restricted to
small values even though the compression may not be small. We note that this
case differs from the uniaxial deformation considered in Chap. 6 because neither
the elastic nor the plastic part of the elastic-plastic deformation is, itself, a
uniaxial deformation. Nevertheless, we follow a procedure similar to that used
previously, writing F¢ in the form F® = F* F" where

FY=@w/w)"I, (7.64)
and
Fe = diag ”1+E“, 1-1E5, 1-1E® || (7.65)
so that
Fe = (v/vg)1/3 diag|]1+E“, 1-1E®, 1-1E® (7.66)
to lowest order in the elastic shear strains. Also to lowest order, we have
E® = diagl Ee, -L1ES, -LES (7.67)
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By Eq. 7.61 and 7.66 we have
Ef =2[1-w/w)V3(FEP)?], (7.68)

and from Eq. 7.66 we sce that
FE =3w/vr)V3 -2(FP)V2, (7.69)

Knowledge of £ and F} is sufficient for determination of all of the remain-
ing measures of deformation.

Stress Relation. The stress is to be inferred from the thermoelastic part of the
deformation gradient. The compression (all of which produces an elastic re-
sponse) can be quite large, but the elastic distortion is limited to a rather small
value. We considered this case in Chap. 6 and found the stress, as given by Eqs.
6.57 and 6.58, to be of the form ’

ty==p, My +2u(v, ME;, (7.70)

where p is the thermodynamic pressure and E® is the elastic part of the shear
strain. The theory to be developed in this section is needed only for rather weak
clastic—plastic waves becausec strong shocks can be analyzed using the
compressible fluid theory of Chap. 5. For this reason we shall neglect thermal
effects and consider only a purely mechanical theory. The functions p and p
appearing in Eq. 7.70 are then taken to be functions of v alone.

To proceed with the analysis it is necessary to consider separately the several
branches of the stress—strain path shown in Fig. 7.8. Because we intend to apply
the theory being developed to shock waves, we identify the yield point with the
Hugoniot elastic limit.

Elastic Compression. For stresses below the Hugoniot elastic limit the compres-
sion and shear strain are both small and the stress relations

th=(r +2ur)En and £ =33 =Ar En (1.71)

of linear elasticity theory are applicable. Since |1-(v/vr)|<1 in this range,
we have Ey =—[1-(v/vr)] and Eqgs. 7.71 can be written

tm=-Ar +2ur)[1-(v/vr)] and fn=fz=-Ar[1-(V/w)]. (7.72)

The pressure and maximum shear stress are given by

p(v)=-(Ar +’§‘HR)E11 = (AR +2pr)[1- (/)]
- N (1.73)
Tase = (1 —t2) =pr En =3pur £ = - pr[1-(v/vr)].

These equations are valid in the range 0< - fy; <#E-
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Figure 7.8. Stress—strain path for aluminum alloy 6061-T6 that is compressed by a
plane shock of strength —#;1 =10GPa and then relieved of this stress. The Hugoniot
elastic limit is taken to be 0.6 GPa. The path from vr to vHEL is one of elastic compres-
sion, the path from —¢/*" to —¢(? is one of plastic compression, the path from -7 to
"1(13 ) is one of elastic decompression, and the remaining section from —11(13 ) to zero

stress is one of plastic decompression.

In some cases it is convenient to use the nonlinear relation of Eq. 7.70 with
p(v) given by the equation of state that is to be adopted in the range of elastic—
plastic compression and the shear modulus given by Eq. 6.62. In this case we
have

-t =p(V)—FrM[1-¥/vr)]. (7.74)

Elastic—Plastic Compression. As in the small-deformation theory, the shear
stress in compression is limited by the yield criterion, t45° =-Y /2, where the
value of ¥, which is designated ¥, in the initial state, may change (usually
increase) as a result of metallurgical changes that occur in the course of a plastic-
deformation process.

At the Hugoniot elastic limit, characterized by the stress

—tu ={FF =[(L/2p) +1] Yo, (1.75)
the specific volume is given by
HEL
L AT NN VY V. I (7.76)
7\1R + 2},I.R 2}LR

and the corresponding longitudinal strain is
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ENFY = Yo /2pr). (7.77)

For stresses beyond the Hugoniot elastic limit, we use Eqs. 7.67 and 7.68 to
write the stress relations 7.70 in the form

h =—p(v)+4u(v)[1_(v/VR)—1/3(FLP)1/2]

(7.78)
to = ti3 = =p(v) =20 () [1= v/ vr) 2 (FF)2].
When the shear stress is expressed in terms of Y these equations give
~ Y
(EPYV2 = (wivg)3[1-LES | = (v/vp)V/3 [1+ ] , (179
L 2 6p(v)
and, as always,
m=-p(M-2Y and tn=t3=-p(W)+3i¥ (7.80)

for compression processes. These equations are the same as the corresponding
equations for the small-deformation theory, except that the pressure varies
nonlinearly with the compression rather than being related to it by a constant
bulk modulus. The pressure is to be calculated from a suitable equation of state
as discussed in Chap. 5. In practice, one usually uses the Hugoniot given by Eq.
3.12.

For non-hardening materials the yield strength is constant so the normal
stress components differ from the pressure by a constant amount. However, it is
often appropriate to incorporate deformation hardening into the constitutive
description by allowing Y to depend upon the plastic strain, the plastic work
done, or some other variable associated with the plastic deformation. One
equation that has been used to represent deformation hardening is

Y =Yo(1+h|yP|"), (7.81)

where yP is the plastic part of the shear angle, as defined in Fig. 2.2 and where
h >0 and »n>1 are material constants. Analysis of the figure (upon the premise
that it represents the plastic part of the deformation) shows that y? and F;P are
related by the equation

P\3/2 _

yP =2arctan @—)————l . (7.82)
( FLP ) 3/2 +1

Equating the yield stress given by Eq. 7.79, to that given by Eq. 7.81 yields the

equation

1/n

Yol l+h +6p.(v)[l—(v/vR)‘”3(FLP)1/2] =0,

Py3/2
2 arctan SEI:_)_—I
(FLP)3/2 +1

(7.83)
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relating the yield stress to the specific volume. This equation can be solved
numerically for F;P(v) when the coefficientsYo, pu(v), A and n are available.
With this solution in hand, the yield stress Y(v) follows immediately from Eq.
7.81. An example of the effect of changing the hardening exponent is shown in
Fig. 7.9 and an example of a #;; —v compression curve is illustrated in Fig. 7.10.

0.0 T T T T !
0.90 0.92 0.94 0.96 0.98 1.00
v/vR

Figure 7.9. Curves showing the increase in ¥ for aluminum alloy 6061-T6 that follows
from Eq. 7.81 for Y5 =0.29GPa, p(v) =pr, and several values of n. The parameter
was varied to achieve approximately the same terminal hardness in each case. In calcu-
lating these curves the values of F;P used are those related to v by Eq. 7.83.

If the material is compressed to the specific volume v the deformation
gradient, FP® =FP(v?)  is obtained from Eq. 7.83 and the yield stress,
Y@ =yw®), can then be obtained from Eq. 7.81. With these results the
pressure, p(® = p(v(®) follows from the pressure equation of state and the
longitudinal stress, — £ , is given by Eq. 7.78,. This state, which we shall call
5@, can serve as the starting point of an elastic decompression process.

Elastic Decompression. When the compressive stress producing a shock is
removed, the immediate response is relief of the elastic deformation and, if the
compressive stress was great enough, this is followed by a reverse plastic
deformation. This, too, is the same as for the small-deformation theory except
that the response is nonlinear.

The elastic decompression begins at a state characterized by the parameters
1P, v®, and FP(v®) determined in the previous section as the limit of a
plastic compression process. Because this part of the decompression process is
elastic, F;? remains fixed so that FP =FP(v(?). The stress relations for the
elastic decompression are those of Eqs. 7.78, so we have
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Figure 7.10. A Hugoniot curve corresponding to the n =2.5 hardening curve shown on
Fig. 7.9. The curve has a concave downward section immediately above the HEL. This
means that, for the hardening equation and parameters used, plastic waves of moderate
strength include a centered simple wave between the precursor shock and the plastic
shock.

f1==p () +4p) {1-(v/vr)3 [P (v)]'12}
(7.84)

tn =t = =p(v) =20 { 1= /vr) [ (v@)]23.

The elastic decompression process ends when f1; =0 or when the shear stress
reaches the reverse yield point, whichever occurs first. Let us suppose that the
stress reaches the reverse yield point first. This will occur at the value of v,
which we shall call v®, for which

=t =6p(W{1-/yr) P P2 3=r @),  (7.85)

Usually, one assumes that ¥ remains unchanged during the decompression
process, and we shall do so here. However, there is no good reason to expect this
behavior because the direction of the shear stress on the 45° planes is reversed
when the decompression curve crosses the pressure curve. Many observations
are inconsistent with the assumption that the forward and reverse yield stresses
are the same. Often, reverse yielding occurs at a lower stress than forward yield,
a response called a Bauschinger effect. Nevertheless, with the assumption that
the forward and reverse yield stresses are of the same magnitude we can solve
Eq. 7.85 for v® and, with this, we obtain (¥ =t (v(®) from Eqs. 7.84. Since
the plastic strain maintains the value it had at the beginning of the elastic de-
compression, we have F,P(v®)=FF(»®).
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Elastic—Plastic Decompression. The stress in the plastic part of the decompres-
sion process begins at the state § just determined and is given by the equa-
tions

ti=-pM+3Y(v) and tr=t3=-p»)-1Y(®¥).

In order to use these equations we must know the function ¥ (v).

7.3 Finite Elastic—Viscoplastic Deformation

Both experimental observation and our understanding of the important physical
mechanisms indicate that plastic deformation accumulates at a finite rate in
response to imposition of shear stress. This rate effect is not captured by the
theories presented in previous sections of this chapter, but is important to our
understanding of shock processes because the characteristic times associated
with the rate-dependent effects are comparable to those of a shock-wave experi-
ment. They are responsible for some of the structural features of compression
shocks that, in turn, influence evolutionary processes such as spall fracture.

There is no universally accepted theory of large elastic—plastic deformation;
the subject is not in the settled state of the theory of elasticity. Although there
are a number of carefully developed theories of elastic—viscoplastic response to
finite deformations, it is difficult to validate or compare them because this
requires both comprehensive data sets for a range of materials and an extensive
computational program to simulate carefully executed and well-instrumented
experiments. A variety of experimental results addressing specific physical
responses have been reviewed by Asay and Chhabildas [6] and it is clear that
some of the observed phenomena lie beyond the range of any theory of elastic—
viscoplastic response. For example, experiments in which adiabatic shear bands
form, flow, and then cool demonstrate changes of shear strength that depend
upon time intervals between successive compression processes or between
compression and decompression processes. These observations cannot be
explained by any theory in which the stress depends only upon current values of
strain and strain rate. Metallurgical examination of materials that have been
recovered after shock-compression experiments shows that the deformation
process is far more complicated than is described by the laminar motions
contemplated in the discussions of this volume and the thermomechanical effect
of these complications is not known [53,111].

The kinematical description of the deformation discussed in the previous
section, including extensions that address rates of deformation [29], is widely
accepted and has been adopted by most investigators developing continuum
theories of finite elastic—viscoplastic response. Constitutive equations in use are
more varied, partly as a result of the evolving state of the theories and partly as a
result of the wide variety of responses that have been observed. In the case of:
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shock physics, particularly, deformation accumulates at rates that exceed those
usually studied in the laboratory and with which we are most experienced. We
have noted that an important mechanism of plastic deformation is the motion of
dislocations through the crystal lattice that forms the arrangement of the atoms
in many materials. In this section we outline an evolutionary theory of plastic
deformation. In previous parts of this volume, the presentation has been
entirely in the framework of continuum mechanics, but much of what is known
of shock physics is based upon considerations at the atomic scale, the scale of
grains in polycrystalline materials, etc. In this section we shall make specific use
of some clementary aspects of dislocation behavior, but at the scale of the
continuum theory of dislocations (which is coarser than that of the individual
dislocations). The theory developed will include such parameters as the density
of dislocations and the average velocity with which they move. The equations
obtained have been found to be of a form that yields predictions in good agree-
ment with continuum-level experimental observations. However, this agreement
is based upon the use of parameters inferred from continuum-level measure-
ments and these parameters often seem inconsistent with related microscopic
measurements. This is not unusual, as experience shows that continuum theories
are often more broadly valid than their microscopic basis would suggest. Since it
is well known that the actual mechanism of plastic deformation is far more com-
plex than that of the dislocation-mechanical models, and since refinements of
the details of these models have not led to improved agreement of theory and
observation at the microscopic level, we use only the most basic aspects of the
microscopic theory, with the objective of establishing forms of the continuum
equations but not that of obtaining a theory that is valid at the microscopic level.

Kinematics. The kinematical description of finite elastic—plastic deformations
that we shall use is that of Sect. 7.2. We shall need to augment the equations
presented previously with some measures of deformation rate. The velocity
gradient is given by Eq. 2.18,

.,
ly =Fy Fy, (7.86)
and substitution of Eq. 7.54 into this equation yields the expression

lij = li; +l,»_l; (7.87)

where we have identified the parts of the velocity gradient associated with the
elastic and the plastic contributions to the deformation as

-1 -1
Ij =Fr Fry, and If =FpAp, FYp, (7.88)

respectively, with
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Ab =Ff F}. (7.89)

The elastic and plastic parts of the stretching and spin are calculated as the
symmetric and antisymmetric parts, respectively, of these tensors.

7.3.1 Constitutive Equations for Viscoplastic Flow

The development of this section is based upon the premise that all plastic flow is
attributable to motion of edge dislocations. This allows us to use information
available from studies of the motion of these defects to establish a specific form
for the viscoplastic response function. The development presented is oversimpli-
fied from a microscopic point of view, but follows procedures that have proven
successful for predicting observed responses in the conditions of interest
[36,73,107]. Among the advantages of a theory based upon microscopic con-
cepts rather than based solely upon continuum principles is that it is assembled
from established equations that describe the separate phenomena contributing to
the overall continuum response. It is easier to understand and, when necessary,
modify each of the separate parts than to deal directly with the continuum
response.

Dislocation Mechanics. Edge dislocation lines move through crystals on
specific planes and in specific directions that are characteristic of the lattice
arrangement of the crystal. A s/ip system in a crystal is defined by the plane on
which the dislocation moves (i.e., on which slip occurs) and the direction of the
relative displacement of the two parts of the crystal that are separated by the slip
plane. A slip system is characterized by the normal vector to the slip plane and
the Burgers vector, which lies in the direction in which a dislocation can move
in this plane. The magnitude of the Burgers vector is the slip displacement that
occurs when a single dislocation passes over the slip plane. Because the normal
vector to the slip plane, N, and the Burgers vector, B, are associated with the
crystallographic arrangement of the material, they are most naturally defined in
the reference configuration. However, they can be equally well defined in the
intermediate configuration, X™, because the atoms of the plastically deformed
material bear the same relationship to their (new) neighbors as they had (relative
to their old ones) in the reference configuration.

Slip on a Single System. Figure 7.11 illustrates a simple shear produced by
dislocation motion on the slip planes defined by the unit normal vector
N=N(,1,0) and with the Burgers vector B=5(1,0,0). The continuum
description of the deformation is

Xt =Xi+yP X2, X3=X2, Xi=X;, (7.90)
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from which we obtain the deformation gradient, its inverse and its material
derivative

1 yP 0 Loy -yr o0 . 0 v 0
FP=l0 1 Of, p=0 1 0f, Fr=fflo o off. (791
0 0 1 0 0 1 0 0 0
From Eq. 7.89 we also have
R I A
AP=FPFP=)0 0 O}, (7.92)
0 0 0
which can be written
AP =yP B®N, (7.93)

where the overbar denotes normalization of the length of the vector and the
outer product has the components (B&N)ra =Br Na.
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Figure 7.11. Dislocation model of simple shearing deformation from the reference
configuration at the left to the plastically deformed configuration at the right. The
horizontal lines represent slip planes.

Slip on Multiple Systems. The significance of the foregoing analysis is that the
deformation rate tensor for a deformation produced by slip on several systems is
obtained by adding the contribution for each of the individual systems (this
procedure is not valid for the deformation gradient). As the illustration of Fig.
5.1 suggests, slip displacements that occur on several systems result in blocks of
the material moving relative to one another but without stretching or rotation of
the individual blocks.

A typical slip system is shown in Fig. 7.12; it is described by the normal
vector to the slip plane

N = N(cosq2,cospisingz, sing; sing;) (7.94)
and the Burgers vector
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Figure 7.12. Slip system. The shaded area represents the slip plane, the vector N is its
normal and the vector B, which lies in the plane, is the Burgers vector.

B = B(singp2sings, sing;cos@s —CcosPicosP2sings (7.95)
—COS(P1COSP3 —Sing) cos@2sings). '

One can show that the normal vector is of length N, the Burgers vector is of
length B, and B is perpendicular to N. To represent all possible slip planes we al-
low @1 to range over the angles 0< @1 <2® and @2 to range over the angles
0<¢2<n/2. Each point of the surface of a unit hemisphere (for X7 20)
centered on the origin of the X~ coordinates corresponds to a slip plane defined
by the angles @1 and@2. For each of these planes there is a continbum of
possible Burgers vectors corresponding to angles @3 in the range 0<¢3 <.
As shown here, the vectors are defined in the plastically deformed configuration
but, as noted previously, are invariant to the plastic deformation that would have
taken them to this configuration had they been defined in the reference configu-
ration. Let us now consider the transformation of these vectors from the plasti-
cally deformed configuration to the current configuration. In a crystal the
Burgers vector lies along a line of atoms and has a length related to the lattice
spacing so it is transformed as a line element to its image, b, in the current
configuration:

b=F°B. (7.96)

The normal vector to the slip plane represents a surface element of this plane
and transforms to its image in the current configuration according to the equa-
tion [103, Eq. 20.8]:

-1
n=JNF®. (7.97)
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In this case
J=detF=v/vr. (7.98)

Slip in monocrystals occurs on known planes and directions that are charac-
teristic of the crystallographic arrangement of the material. The slip planes are
usually those in which the atoms are most closely packed and the direction of
the slip is that of the most closely packed lattice vector. In any case, there is a
known, modest, number of candidate slip planes for any given ductile crystalline
material. In dealing with polycrystalline metals we shall assume that slip (inter-
preted in the continuum sense as an average response) can occur on any plane
and in any direction in the plane. However, we shall introduce the approxima-
tion that it is sufficient to restrict attention to some finite number of slip systems,
making the analysis the same as that for a monocrystal. In this case, a finite
number of sets of angles, (p{®, 0¥, @) for k =1,---,n, define the candidate
slip systems. The length of the dislocation lines per unit reference volume of
material at (X, £) that falls on the k® slip system is designated Np1(X",?) and
the total length of dislocation line per unit volume, Nr(X", ), is the sum of the
numbers N1 (X", #) for each individual system. If the initial distribution of
dislocations over the » slip systems is uniform, then

Ner (X", D=1 (X", D/n . (7.99)

Experimental observation indicates that the motion of some of the dislocations
on a given slip system may be prevented by obstacles in the lattice or they may
become immobilized in the course of a deformation, leaving only a fraction,
Fem(X*, 1), of the AVeT(X”, ) dislocations that can contribute to deformation
on the k® slip system. Therefore, the number of mobile dislocations on this
system is

NMem(X*, 0 = fim(X*, ) Mer (X, 1), (7.100)
and the total number of mobile dislocations per unit reference state volume of
the material, /M (X", 1), is the sum of NVim over the individual slip systems.

Since the velocity gradient for a deformation produced by slip on several
systems is obtained by adding the contribution for each of the individual sys-
tems, we have

n
AP = Z POB®O QN® | (7.101)
k=1

The connection between the stress and the plastic deformation rate is made
through Orowan’s equation,

L LOF YA V;’f)(r), (7.102)
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where B®) is the length of the Burgers vector, Nim is the number of mobile
dislocations on the k™ slip system, (¥ is the shear traction on the slip plane in
the direction of the Burgers vector, and Vi~ (t®?) is the average velocity with
which these dislocations move in the direction B*) . Substitution of Eq. 7.102
into Eq. 7.101 yields the result

n
A=Y i BO NG 1D, (7.103)
k=1

and the rate of plastic deformation is given by
FP=APFP (7.104)

To calculate the dislocation velocity we need to know the component of the
shear stress that falls on the slip plane and in the direction of the Burgers vector.
Because the stress is defined in the current configuration we begin there. The
first step is to transform the vectors N*) and B®) to the current configuration.
This is done using Eqs. 7.96 and 7.97. In applying these equations we shall
introduce approximations that follow from decomposing the elastic part of the
deformation into a finite dilatation and a small distortion. When this decomposi-
tion is adopted we have

E[e‘ =(V/VR)1/3F;;S 80(.1"; (7105)
SO
-1
1 = 0 1v) N bra B (7106
and
b® = (wivr) P Fg 8ar B, (7.107)

The magnitudes of these vectors are given by

n® =@ /vr)AN® [1-(N )Y 2NONP 8o dap Egy ++--1  (7.108)
and

b® =(v/vg)V3B® [1+(B(k))"zB,(—")ng)8ra Sap E;E +-] (7.109)

when we neglect quadratic terms in E* . Unit vectors n® and b® are

obtained by dividing the vector by its magnitude.

The traction vector on the surface element at x that has unit normal vector
a® is given by

t®) =p®¢, (7.110)

and the component of this traction in the direction b®) is
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k) = (t(k).ﬁ(k))ﬁ(k) . (7.111H
The magnitude of the vector T®) is designated 1®: T*) =¢®).H*)

Several expressions for the dislocation velocity in the current configuration,
V¢ (1) , have been used, including [36,60,73],

0, |1®|<g®»

Vi (r By = (s®)m (7.112)
kyy 2 7 (k) (k)
Cssgn(t )1+(s("))"" A = A2

where s® =(|t®|—x®*)/7T  In this equation the material parameters are
m>0, Cs >0, the elastic shear wavespeed, ©' >0, a characteristic stress to be
determined experimentally, and ©* >0, the back stress on the k™ slip system.
The back stress, which plays the role of a shear yield stress on the slip system
and increases with increasing deformation, is given by

TE* =go{1+h |yP®Vny, (7.113)

which can be placed in the form of an evolutionary equation for an internal state
variable by differentiation.

The next task is transforming the dislocation velocity given by Eq. 7.112 from
the current configuration to the plastically deformed configuration so that it can
be substituted into Eq. 7.103. Since a dislocation moves over the same number
of lattice sites in each configuration in a unit time, we have

V}(’i’ =(B® /p®y P, (7.114)

with the ratio B®*)/5®) being determined from Eq. 7.109.

The factor Ninm in Eq. 7.101 can be expressed in terms of Vet and fim
by Eq. 7.100, with these factors being given by evolutionary equations for which
we shall adopt the forms

Nt = Lo [NT = NeT ] Net fim | V;’f)(t(")ﬂ
, (7.115)
Sim =Im [t = fim | Net fim V)g’ﬁ)('c("))

suggested by Kelly and Gillis [64]. The quantities VT = Net and fi < finm
are saturation values beyond which the evolutionary processes cannot evolve
and the coefficients Ly and Ly are positive material constants. According to
these equations the total number of dislocations increases monotonically, al-
though at a varying rate.
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Among the reasons a dislocation-based theory of plasticity is attractive is the
availability of equations such as Eqgs. 7.102 -7.115, along with the insight into
the deformation process that they provide.

7.3.2 Constitutive Equations for Thermoelastic Response

Our next task is incorporation of the foregoing description of viscoplastic
deformation into a theory of thermomechanical response. An appropriate setting
for this is the theory of thermodynamics with internal state variables developed
by Coleman and Gurtin [24]. In adopting this theory, we are assuming that the
thermomechanical response of the material depends only upon its current state,
but that additional variables beyond the elastic strain and specific entropy are
needed to characterize this state. These latter variables, called internal state
variables, change as the deformation and specific entropy change, and are to be
determined from first-order ordinary differential equations calied evolutionary
equations. The internal state variables identified in the previous section are
a; =Net, az = fim, and a3 =t®)*, We call these variables structural vari-
ables because they are associated with defect structures in the lattice.

The specific internal energy function for this material depends upon the
elastic strain, the specific entropy, and the internal state variables:

e=8(El,ma), (7.116)

where a designates the list of internal state variables. Experimental observation
indicates that the elastic response of metals is largely independent of prior
plastic deformation, so we separate € into a part that depends upon the strain
but not the structural variables and a part that depends upon these variables but
is independent of the strain, giving

e=£€1(Efy, M +€2(n,a). (7.117)
From this equation we obtain the stress equation of state

081 (E*
Tra =pR—S‘(e—’"), (7.118)
and the temperature equation of state
A rme n
g=281(E%m) Oe:(na)
on on

(7.119)

As we have seen in Chap. 6, the foregoing equations of state can be simplified if
we assume the deformation from which E° is derived consists of a finite
dilatation combined with a small distortion. In this case, the stress is given by
Eqs. 6.57-6.62, which can be written
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ty ==p(v, W, +2u(v, M E;, (7.120)

where the pressure can be derived from a suitable equation of state, as discussed
in Chap. 5, and the shear modulus can be obtained from an equation such as
6.62.

Because the structural variables do not affect the elastic response the mate-
rial that was initially isotropic remains so and €; (E€, 1) is an isotropic function
of E€. Normally, the structural variables will evolve differently on different slip
systems, leading to anisotropic viscoplastic response.

7.3.3 Uniaxial Deformation

The kinematic description and stress equations for uniaxial deformation have
been discussed in Sect. 7.2.

When isotropic materials are subject to uniaxial deformation along the
1 axes, the transverse stress components are the same, #; =133, and the shear
stress achieves its maximum absolute value, |t4se|, on planes lying at 45° to
the x axis, with

T4s0 = %(tn —12). (7.121)

When we adopt Eq. 7.73 for the shear stress, Eq. 7.121 becomes
T4se = 3ug Ef°. (7.122)

The dislocation velocity increases rapidly with an increase of the shear stress on
the slip plane, so we shall assume that all of the slip occurs on these 45° planes
and that its Burgers vector is in the direction of the vector of maximum shear
traction, which we shall designate T4se.

The unit normal vector characterizing these slip planes in the current con-
figuration is of the form

n((p1)=715(1,coscp1,sin(p1), 0<q<2m, (7.123)

and the maximum shear traction vector on these planes is given by

Tase =-1/‘?'c45°(1,—coscp1,—-sin(p1) , 0<¢1<2m. (7.124)

Since we have postulated that slip occurs in the direction of the vector T4s , the
Burgers vector is

b((p1)=:l%b(1,—cosq)1,—sin(p1), 0<pr <27, (7.125)

The vectors N and B related to n and b by Egs. 7.96 and 7.97 are
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qlz((“%ffs)’ (1-3EZ) cos@r, (1-3E*)sing1) )

N
(7.126)
B

= ﬁB ( a —%Efs), - +%Efs) cos 1, —(l+—z-ffs) sing1) ) ,
where we have used Eq. 7.66 and kept only linear terms in £ and where

b=B/w)P(1+1E*). (7.127)

Equation 7.101, from which we calculate the rate of plastic deformation, was
developed for the case in which only a finite number of slip systems are consid-
ered. It can be applied to the present problem by selecting a finite number of
values for @1, but it is easier to interpret @1 as a continuous variable, in which
case the sum becomes the integral

2n _
N = ) Nu(P)B(@) @ N(@)Vy-(9)dop. (7.128)

For the present case, ©*) =14s0, a value independent of k, and hence @1, so the
dislocation velocity is also independent of ¢,. We shall also take Ny to be
independent of @1, so Eq. 7.128 can be written

N = N Vyr (T459) :nB(q)) ®N(p)do, (7.129)
and from Eqs. 7.126 we find that
N =L1nBNw Vi (1459 diag| 2, -1, -1|. (7.130)
Substitution of this result into Eq. 7.104 yields the flow rule
FP =nBNm Ve (tas) F _ (7.131)
=nBWIvR) ™3 M Vi(tas?) A+ L E° ) FP

giving the longitudinal component of the plastic deformation gradient.

Because only the ¢2 =45° planes play a role in the analysis, Eqs. 7.102 -
7.115 take the simplified forms

0, |’C45°|S’C*
Ve(tase) = "
v(Ta5°) _ Cssen(tase) s
1+ ™

s |T45°|>1:‘
=1y (L+h[yP |V (7.132)
N1 ==Ly [NT - N1 I N1 frmn (v/vR) ™2 (1= L EC Wi (t450)

Su= Dl R = fu ] Wr fu@ive) V3= 2 ES Wa(rase),
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where s = (|t 4se|-7")/1".
Using eq. 7.102, the evolutionary equations for A'r and fu can be written
Nr =(Ly /B) [N1 - NT] 1P
S =D/ B = fua 147 .

When quadratic and higher terms in £ are neglected. These equations can be
integrated to yield the expressions

(7.133)

Nt =NT +[No—~ NT]exp[(Lw/B) y?}

Su=fRa+1fo— firlexp[(Lm/B)yP]

when the initial conditions &1 =No and fum = fo are imposed at yP =0.
Determination of &t and fum is reduced to evaluation of Eqs. 7.134 with y?P
given by Eq. 7.82 and we have Nv = NT fum.

(7.134)

Since the Hugoniot curve represents the equilibrium response to shock com-
pression, it does not depend upon the evolutionary equations and is the same as
the one discussed in Sect. 2.2.

The richness of the theory lies in the changes in 1, fu, and t* that occur
as a result of the deformation, and in the way the dislocation velocity V. (tsse)
varies during the deformation process.

7.4 Exercises

7.4.1, Show that the maximum shear stress in a uniaxially strained body occurs
on planes inclined at 45° to the strain axis.

7.4.2. Consider the extension of a slender rod in the approximation that the
transverse stress components vanish (i.e., states of uniaxial stress). Calculate
(using the small-strain theory) the longitudinal and transverse strain components
and the elastic and plastic parts of the strain,

7.4.3. Derive Eq. 7.82.
7.4.4. Derive Eqs. 7.108 and 7.109.

7.4.5. Show that the flow rule of Eq. 7.21 is automatically satisfied for the
uniaxial motions discussed in Sect. 7.1.1.

7.4.6. What is the slope of the 11 —v elastic—plastic compression curve at the
HEL for a metal that hardens according to Eq. 7.81? How does this slope com-
pare with that of the elastic curve below the HEL? Since this analysis involves
only the small strains that prevail near the HEL it is adequate to take p(v) =z .



CHAPTER 8

Weak Elastic Waves

8.1 Linear Theory of Elastic Waves

The linear theory of elasticity emerges when attention is restricted to the case in
which deformations are small and stress is proportional to strain. The simplicity
of this theory, combined with the applicability of many highly developed meth-
ods of linear analysis, makes it possible to solve complex multidimensional
problems. It is not our purpose to address this entire body of work, however, but
simply to consider the special case of linear plane waves of uniaxial strain. The
theory of linear wave propagation is not usually regarded as a part of shock
physics, but it does permit us to illustrate important aspects of wave propaga-
tion. The insight into the mechanics of wave propagation that follows from a
study of this simple case is helpful as one secks understanding of the more
general problems.

When attention is restricted to uniaxial motions of isotropic materials, Eqgs.
6.16 and 6.17 yicld the stress relation

3}
fi1 = (AR +2pR) =, (8.1)
ox
which, according to Eq. 2.39, can be written
oUu
fnn=(r +2 —_— 8.2
11 =(AR +2pRr) ox (8.2)

in the limit of small strains. The particle velocity, x, is given by Eq. 2.36 which,
by Eq. 2.40,, can be written

x=U,. (8.3)

Substitution of these results into the equation of conservation of momentum, Eq.
2.92, (with £'=0) produces the linear equation for governing the propagation of
weak longitudinal elastic waves,

Co® Uxx =Uy , 8.4)
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where
C02 =(Ar +2p.R)/pR. 8.5)

For convenience, solutions of Eq. 8.4 are called linear elastic waves and Cy is
the wavespeed. In this case of small deformation, no distinction need be made
between the Lagrangian and Eulerian coordinates, X and x.

Equation 8.4 has the same general character as the nonlinear equation that it
approximates, but some important special features follow from its linearity.
First, we have scaleability of solutions; if f(X,¢) is a solution, then so is
o f(X,t) for any constant multiplier o.. The second important property of the
linear equation is superimposability of its solutions: If the functions Uq)(.X, #)
and U@)(X,t) are solutions, then sum Uq) +U¢) is also a solution. These
properties indicate that linear waves of all amplitudes (and all parts of a given
waveform) propagate at the same speed and that lincar waves do not interact
with one another. In particular, linear waves propagating in opposite directions
can pass through one another and emerge unchanged in form.

It is easy to verify that the function
UX,H=Ur)(X-Cot)+Upy(X +Co?) (8.6)

is a solution of Eq. 8.4. The functions Uwr) and Uy are arbitrary, subject only to
the restriction that they be twice differentiable. The function Ugr) describes a
wave propagating in the positive X direction and called a right-propagating
wave. Similarly, the function Uiy describes a left-propagating wave.

Before considering these waves further, it is worthwhile to investigate
shocks in this linear context. When the weak-shock limit of the jump conditions
2.110 and 2.113 is taken, it can be shown that the wavespeed and the material
and spatial shockspeeds stand in the relation

Co =Us =us—5c‘ B (8'7)
to within higher-order terms in the jumps.

With this result, the jump conditions for mass and momentum are found to
be satisfied if

[vxn]+co[uxx, n]=o0. (8.8)

The important point is that, in the weak-shock limit appropriate to the linear
wave environment, the shock propagates at the same speed as the smooth wave.
This means that a disturbance containing a shock propagates in the same way as
a smooth solution, even though the derivatives appearing in the differential
equation do not exist. Traveling-wave solutions of the form of Eq. 8.6 may
involve shocks as well as smooth portions.
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Let us now consider the function Uw) (X — G £) corresponding to a right-
propagating wave. It is a rather arbitrary curve—called a waveform—such as
that shown in Fig. 8.1. The essential feature of this arbitrarily shaped wave is
that, by virtue of the dependence of Ur) on X —Cot, it propagates to the right
with no change in shape.

Ur)

N\
N/ -
X—-Cot

Figure 8.1. Waveform

The graph in Fig. 8.2 shows all parts of the disturbance being translated in
the X direction by a distance equal to the wavespeed multiplied by the elapsed
time interval. This is an example of the type of data that we would recover if we
could take a sequence of stop-action photographs of the wave as it advanced
through the material (bearing in mind that no distinction is made between X and
x in the linear theory).

Ur
(R) AX

t increasing

Figure 8.2. Propagating waveform

We can also plot Uy as a function of ¢ for several values of X, as shown in
Fig. 8.3. Data of this sort are obtained by recording the information produced as
the wave passes gauges fixed to various particles of the material.

The behavior of a wave propagating in the —X direction (which we call a
left-propagating wave) is entirely analogous to that of the right-propagating
wave—only the direction of propagation is reversed.
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A

Uw AX/C,

Xincreasing

N\ -
S\

Figure 8.3. Temporal waveform. Note that, in this representation, the waveform is a
reflection (about a vertical line) of the waveforms of Figs. 8.1 and 8.2.

It is useful to consider representation of wave phenomena in the X—f coordi-
nate plane shown in Fig. 8.4. The value of the solution in a right-propagating
wave is the same at all points along every line of the form X —Cot = Xo, and
the analogous situation holds for left-propagating waves relative to lines of the
form X +Cot = X1. These lines, which are called characteristic lines, ot simply
characteristics, play a central role in discussions of all wave-propagation phe-
nomena. Since each small part of the waveform propagates unchanged in form,
it is useful to think of the wave-propagation process as one of transmission of a
feature (often called a wavelet) of the right-propagating waveform along the
characteristic line X — Cof = Xo, where the parameter Xo¢ is chosen to identify
the specific characteristic line corresponding to the part of the waveform in
question. Since a wavelet cannot propagate backward in time, the characteristics
are oriented in the direction of increasing time. All points ahead of a point
marking the present time are in the future, whereas those lying behind it are in
the past. Events occurring in the past or at the present time can influence the
future, but future events cannot, of course, change present or past events. Since
wavelets can be transmitted in either direction from a point in the body, the
mathematical standing of the coordinate axis is different from that of the time
axis.

So far, we have discussed the propagation of an arbitrary disturbance, but
have not addressed the relationship between a wave and the conditions produc-
ing it. In the context of the nondissipative theory under discussion, a wave will
continue to propagate indefinitely. Waves can be introduced into a body by
application of force or imposition of a velocity change at its surface or by energy
deposition or through application of body forces by electrical, magnetic, or other
means.

To begin our study of linear elastic waves, let us consider the simple case of
waves in the half-space X > 0. The present time is designated ¢ =0. The future
state of the body depends upon both the present state and stimuli to which the
body is subjected in the future. The present (initial) state of the body is
characterized by functions giving the strain (or equivalently, the stress) and the
particle velocity at every point of the body:
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yd

Figure 8.4. An X-t diagram. The lines X =Xo+Cot are trajectories of constant
amplitude of a right-propagating waveform. Similarly, lines of the form X = Xo-Cot
are trajectories of constant amplitude of a left-propagating waveform.

>

Xo Xi X

Ux (X,0]i=0=S(X), X20 @9
U(X,)|=0=CoV(X), X20.

These equations, giving the initial state of the body, are called initial conditions
and the functions S(X') and CoV' (X)) are initial values.

Figure 8.5. Typical characteristic curves.

Since two characteristics capable of transmitting information into the future
emerge from each interior point X >0 of the body, two conditions, such as are
given by Egs. 8.9, are required to completely determine the effect of the present
state upon future states. The future states are also affected by influences to
which the body is subjected at future times. Let us consider the case in which
these influences are applied at the surface X =0 . Examination of the X—¢ plane
of Fig. 8.5 shows that there is only one family of characteristics capable of trans-
mitting boundary information into the future. Therefore, only one boundary
condition can be specified. We might specify application of normal traction to
the boundary, a condition that takes the form

(0, ) =pr C¢ Ux (X, Oy =0 = pr C§ E(t), 120, (8.10)
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Another possibility would be to specify the motion of the boundary in terms of
the particle-velocity condition

(0, =Ut (X, Dy =0=Co H(t), t20. (8.11)

Another condition, not having to do with the wave-propagation process but
simply specifying the reference position of the body, is

U(,0)=0. (8.12)

The characteristic line X =Cof¢ plays the very important role of separating
the X—¢ plane into regions in which the waves are, and are not, affected by the
boundary conditions. It is easy to see that information about events occurring on
the boundary of the body at, or after, r =0 cannot be transmitted to a point X in
the interior before the time ¢ = X /Co . For this reason, the solution in the region
X >Cot is independent of the boundary condition, depending only upon the
initial conditions.

8.1.1 Initial-value Problem

In the region X > Cot of the X—¢ plane (let us call it “Region 1), the solution
of Eq. 8.4 depends only upon the initial conditions since insufficient time has
elapsed to permit changes in conditions imposed on the boundary, X =0, for
t> 0, to produce an effect. In the following analysis we are assuming that the
region is unbounded: X €[0, «) . The case of slabs of finite thickness will be
discussed in Sect. 8.3.

Let us consider a solution of the traveling-wave form

UnyX,H=Uary (X -Cot)+UaL)y(X +Co ), X >Cot. (8.13)

The functions Uar) and ULy, which are arbitrary at this point, are determined
by requiring that Uq) satisfy the initial conditions 8.9. Differentiating, we have

gﬂé)(# = UaR) (X = Cot) + UGy (X +Cot)
Sex (8.14)
—(1)6(1‘—’0 =—CoUR) (X = Co )+ CoUaLy (X + Co 1),

where the prime denotes total differentiation with respect to the single argument
(either X +Cortor X —Cot) upon which the function depends. Substituting
Eqgs. 8.14 into Eqgs. 8.9 leads to the results

Uar) (X) = 1[S(X) -V (X)]

( (8.15)
Ua (X) =[S (X) +V (X)],
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which can be integrated to yield

X-Cot

Uaw (X =Cof) =Uoy (0)+3 I [S@ -V ©1dc
0

(8.16)
X+Cot

Uany(X +Co 1) =Uqy) (O)+% I [SE+V()1dC.
0

Substituting these results into the general solution 8.13, applying the condi-
tion 8.12 to eliminate the constant term, and rewriting slightly, gives the final
result

X X+Cot
Uy (X, 0= J' S G+ J‘ S©dg
]

X

1 X 1 X+Cot
‘EJ- S(@)d@;j Ve,

X-Cot X-Cot

8.17)

which shows that the displacement at the point (X, #) depends upon the initial
conditions in the range [ X - Cot, X +Cot] and an offset displacement calcu-
lated by integrating the initial value of the strain from the boundary to the point
X

We are more often interested in the values of the particle velocity and strain
(or stress) than the displacement, and these fields are easily seen to be given by
the equations

P(X, 0= 6U1éi(, )]
(8.18)
=—;—Co [S(X+Con+V (X +Cot)—=S(X -Cot) +V (X = Co 1)
and
Ei(X,0)= —6U16g5((, )
1 (8.19)

=-2~[S(X+Cot)+V(X+Cot)+S(X-Cot)—V(X—Cot)].

Let us consider the X—¢ plane of Fig. 8.6. From the foregoing equations we see
that the solution at the point of intersection (X™*, ¢*) of the two characteristics
shown can be expressed in the form

(X" )= LG [SC) +V (X)) - S(Xo) +V (X0)] (8.20)
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and
En (X", 1) =[S +V (X1) +S(Xo)-V (Xo) | . ®.21)

This shows that the values of particle velocity and strain at any point in the
region X > Cot depend only upon the values of the initial conditions on the two
characteristics that pass through the point in question.

Let us proceed to obtain the solution in the remaining part, 0 < X <Co f, of
the X—¢ plane.

Xo X X X

Figure 8.6. An X—t diagram to be used in conjunction with Eqs. 8.20 and 8.21 to see
how the solution at (X % ¢*) depends upon the initial conditions at X and X;.

8.1.2 Boundary-value Problem

The solution in the region 0 < X <Cot of the X—¢ plane (let us call it “Region
2”) can be expressed in the same traveling-wave form as before,

U (X, H=Uary(X =Co) +Uay(X +Go ), X <Cot, (8.22)

but with the functions U@r) and Ur) being determined by a boundary condi-
tion imposed at X =0 and a condition that the solutions in the two regions
match on the characteristic X =Co¢ along which the regions are joined. For the
boundary condition at X =0, let us suppose that the normal traction is pre-
scribed, as indicated in Eq. 8.10:

Ux (X, Dly -0 =E@), t20. (8.23)

Recall that the initial condition Ux (X, )| =S(X) has also been speci-
fied. At X =0 and =0 these conditions may or may not agree. If they agree,
ie. if S(0)=E(0), we have a smooth solution and the derivatives of U with
respect to both X and ¢ are continuous along X =Cot . If S(0) # E(0), a shock
is introduced at the boundary and propagates along this characteristic. The
matching requirement is that the jump condition 8.8 be satisfied along this line.
For this example, let us suppose that S(0) # E(0) so a shock is produced. Then,
the matching condition is
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_Ue (X, 1) +C oUp) (X, 1)

0 ot =xrco 0 oX t=X/Co

(8.24)
_ o (X, r)| o V(X
ot t=X/Co oX t=X1Co’

which can be written in the form

U (X, 1) +c, Vo, t)|
ox

o l=xico =G[sexy+vex)] ©.25

t=X/Co

by using Eqgs. 8.18 and 8.19.
Imposing the stress boundary condition on the solution 8.22 yields the con-
dition
Uar) (-Co ) +Uqny(Cot) = E(1), (8.26)
and the matching condition of Eq. 8.8 requires that
Uan (©) = [S©)+V Q)] (8.27)
for £ > 0. Integration yields the displacement

X+Cot

UoLy (X +Cot) =% J‘ (SO +V(O1dE+Uy (0) . (8.28)
0

With this result, Eq. 8.26 takes the form
Ury (=Cot) = E(t) =[S (Co ) +V (Co 1)] (8.29)

and integration, followed by some simplification, gives

—~(X-Cot)

Ugr) (X =Co t)=+% j [S@+VOIdE
’ (8.30)

—(X—Cot)/Co
—Co J' EQ)dC+Uqr (0).

0

Combining Eqs. 8.28 and 8.30 leads to the final result for the displacement in
the region 0< X <Cyt:
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X +Cot —(X-Cot)

[S@+V©ldC+ J. [S@+V (@14

0

U(z)(X,t)=%j

—(X~Cot)

(X /Co)
-Co I E@)dC,

0

(8.31)

because, as before, the contribution Ugzr)(0) +Uar) (0) vanishes by virtue of
Eq. 8.12. The particle velocity and strain are given by the equations

#(X, ) =-Co E(t——g;]

(8.32)
+%[S(X+Cot)+V(X+Cot)+S(— (X =Con))+V (= (X = Cot))]
and
En(X, 0 =E(t—-2(——)
Co
(8.33)

+-21— [S(X+Cot)+V (X +Co)=S (- (X =Co )=V (-(X ~Co D)].
As for the solution in region 1, we can express the particle velocity and strain at
a point X", ¢* in terms of boundary and initial conditions at points where
characteristics intersect the axes:
(X )= -CoE(to)+%[S(X1)+V(X1) +S(Xo) +V (X0)]
En (X", 1) = E(to) + 1 [SO0) +V () - S(X0) -V (Xo) ),

where the points Xo, X1, and # are defined in Fig. 8.7.

A .

thN O e
.

z S
o S
0 e}
%G

o U]
_XO Xo X* X1 X

Figure 8.7. An X—¢ diagram to be used in conjunction with Eqs. 8.32 and 8.33 to see
how the particle velocity and strain at (X", ¢") depends upon the initial conditions at X,
and X, and the boundary condition at £, .
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8.1.3 Wave Propagation into an Undisturbed Body

Let us specialize the foregoing solution to the case of a body that is initially
undeformed and at rest. The initial conditions for this case are

S(X)=0, V(X)=0. (8.34)

The solution in the region ahead of waves emanating from the boundary is
Un(X,0H=0, (8.35)
In this case, this region is called a rest zone. The solution in the region behind

the leading characteristic of the wave follows immediately from Eq. 8.31 and the
complete solution is

t-(X/Co)
~Co J. EQ)d;, 0<X <Cot
UX, 0=

0 (8.36)
0, X>Cot.
If E(r)=0 for all >0 the material is not subjected to any stimulus and, of
course, remains quiescent. The boundary condition
0, <0
E@®)= 8.37)
Ey, 120,

with Eo = const. corresponds to sudden application of a sustained traction. In
this case the solution 8.36 is a shock and takes the form

0, t<0,X>0
UX,H)=4 Ec(X-Cot), 08X <Cpt (8.38)
0, X>Cot.

Examination of this solution shows that, as might be expected, the application of
traction to the boundary causes it to move in the X direction (the direction of the
force) by an amount U (0, ) =— Co Eot, i.e. atarate x =— Cy Eo. The gradient
oU/0X =Ep intheregion 0< X <Cof is constant, corresponding to a constant
stress in this region. The boundary between the rest zone and the disturbed zone
is a shock of amplitude [8U/8X]=Eo (or, equivalently, [dU/dt | =—Co Eo)
propagating into the undisturbed material at the speed Co .

If the boundary loading history is of the form
0, t<0

E(t)y={Ey, 0<t<7 (8.39)
0, t>1,
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the displacement field is found to be

0, X >Cot
UX,)={ Eo(X -Cot), Cot>X> Col(t—71) (8.40)
0, Co(t—-1)>X >0.

This solution is simply a square pulse of strain or particle velocity that has
duration T and propagates unchanged in form at the speed Co .

If the boundary load is applied for a finite time T, as in the previous case,
but is a smooth pulse so that £(0)=0 and E(1)=0 for >, the general
solution 8.36 takes the form

0, X=>Cpt
(X /Co)

UK. D= ~Go L E(®)dS, Cot>X >Co(t—1) 841)

T
-Co I E(9)dS, 0<X <Co(t-1).
0

|

Note that the material in the region 0<.X <y (f—71) behind the pulse is dis-
placed, but is at rest and unstrained.

8.1.4 Domains of Dependence and Influence

Because waves propagate at a finite speed, a disturbance introduced into a
material body produces an effect at distant points only at later times. For one-
dimensional problems such as that of uniaxial motion the issue is best studied in
the X—t plane. Let us consider a point X, f* in the initial response region

X —Cot x* X' +Cot" X

Figure 8.8. An X—¢ diagram showing domains of dependence and influence for the point
Xt
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Figure 8.8 shows lines X —X" =+Co(t—¢"). Examination of Eq. 8.17
shows that the displacement at X", ¢* depends upon the initial conditions in the
interval [X*—Cof", X* +Co"]. This interval is called the domain of depend-
ence because the solution of Eq. 8.4 depends upon initial data in this interval but
is independent of initial data outside this range. It is important to note that the
derivatives of this solution, which give the strain and particle velocity, do not
depend upon the entirety of the data in the domain of dependence, but only upon
the data at the endpoints, as shown by Eqs. 8.18 and 8.19.

8.2 Characteristic Coordinates

The characteristic lines along which waveform information is transmitted play a
fundamental role in the theory of partial differential equations. Since the linear
case is so explicit and the solutions so transparent, the basic importance of the
characteristics may be overlooked. The theory of nonlinear waves is less explicit
and a full understanding of the properties of the characteristics is needed when
these waves are studied.

As before, our investigation concerns the linear wave equation 8.4. A com-
mon and convenient procedure applied in studying differential equations of
order higher than one (the wave equation is of order two because second deriva-
tives occur) is to write them as systems of first-order equations in which the first
derivatives of the unknown functions appear as dependent variables. In the case
of the wave equation, we have

S(X,N=Ux(X,1)
1 (8.42)
V(X,H)==Ui(X,0).
Co
For the second derivatives to exist, we must have
Uxt (X, =Uwx(X,1),
)
ColVx (X, 0)=8S1(X, ).
Substituting the relations 8.42 into the wave equation 8.4, we obtain
NX,H=-—Co Sx (X, 1)
so the first-order form of the wave equation is the system
S, H-CoVx (X, =0

(8.43)
Vi(X,t)—Co Sx (X, 1) =0.

It is apparent that these equations are coupled, i.e. each equation involves
both of the dependent variables, S and V. A great simplification would be
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achieved if the equations could be written in an uncoupled form, and this is
exactly the form resulting if the coordinate lines X = constant and /= constant are
replaced by coordinate lines made of the characteristics. Specifically, we choose
coordinates £ and r defined by the equations

§=X+Cot
(8.44)
1’]=X—Co t.
From the chain rule for differentiation, we have
OS(X,1) _0S(Em 08 0SEm on_ . (as asj
= D] ——— 0 ——— .
or ot ot on ot o 0
: n s om (8.45)
OS(X,n _0SEm 05  OS(Em) on _0S oS
ox o X on 08X ot om’

and analogous relations for the derivatives of V' (X, r). Substituting these ex-
pressions into Eqgs. 8.43 and simplifying the result gives

Sg(ga 11) - Vg(E_,, 11) =0
Sa(g,m)—Vn(E n) =0,

which we can write as

é%(s —V)=0
5 (8.46)
%(s +V)=0,
These equations can be integrated immediately, with the result
SEN-VE n=0rM)
En-VEm=Dr 8.47)

SEN+V(EN=DLE).

Equations 8.46 are said to be the characteristic form of the wave equation, and
the functions @1 (€) and ®r () are the Riemann invariants of the system. Each
of these expressions is called an invariant because its value is constant on the
line € = constant or n=constant. Since these lines are characteristics for right-
and left-propagating waves, respectively, the Riemann invariants are just the
quantities that are transmitted by these waves. The traveling-wave form for
solutions of the wave equation considered previously can be recovered from
Eqs. 8.47 by solving for Sand

SEm = Lo E) + dr )]
Vg w=1oLE) - ork)]
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8.3 Plate of Finite Thickness

The preceding analysis concerned waves in a half-space, with specific examples
being given for cases in which waves originated at the boundary and propagated
into the interior of the material. The important issue of wave reflection does not
arise in this case but does come to the fore when a wave encounters a boundary
or an interface at which materials with differing properties are in contact.

8.3.1 Unrestrained Boundary

Let us consider the case in which the half-space is replaced by a plate of thick-
ness X, that is undeformed and at rest. The solutions of Section 8.1.3 remain
valid for this new domain for times 0<t < X1/Cy prior to the time at which the
wave first encounters the boundary at the point X = X .

Interaction
Region

0 X X

Figure 8.9. Lagrangian X—¢ diagram of a pulse of finite duration interacting with a
boundary.

The X—t diagram of Fig. 8.9 illustrates the wave field for the case in which a
traction

0, t<0
th={poCLE(t), 0<t<n (8.48)
0, t>7t,

with £(0) = E (1) =0 (thus precluding introduction of a shock), is applied to the
boundary at X = 0. Focusing upon the incident wave region, we have

t~(X/C 0)

Uny (X, 0)==Co J’ E@)d; Co(t-t)<X<Cot. (8.49)
0
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As before, the strain and particle velocity associated with this disturbance are
given by

(8.50)

&L - —coe(-£).

Because the boundary at X = X, is free of traction, a second wave, called a
reflected wave, must arise to cancel the stress transmitted to the boundary by the
incident wave. When the incident wave encounters the boundary at ¢=X1/Co
the reflection process begins. Clearly, the reflected wave is a left-propagating
wave having the property that it exactly offsets the stress that the incident wave
would produce at X if the material extended beyond the boundary at that point.
If we imagine the material to extend beyond X, to X =2.X1, then we see that a
wave of the same temporal shape as the incident wave, but carrying stress of the
opposite sign and propagating to the left from X =2.X1 would effect the can-
cellation. The reflected wave U would therefore be such that
U (X, 0 _ _ _2X1—X) 2X-X 2Xh—X

<t< +1, 851
£3% Co Co co Tt ®3D

subject to the additional condition that t cannot exceed 2.X/Co, the time at
which the reflected disturbance first encounters the surface at X =0.

E(r

Combining incident and reflected waves gives the displacement gradient
field

BU(X, D) =E(,_£)_E(t_2!_(_l‘_X__) (8.52)
oxX Co Go

in the region where both are defined. This interaction region is encircled in
Fig. 8.9. Clearly, the gradient Ux , hence the stress, vanishes at X = X7, thus
satisfying the condition that the boundary be free of stress. The stress field is
obtained by substituting Eq. 8.52 into Eq. 8.1. If we are careful to define £(¥) to
vanish everywhere outside the interval (0, 7), then the inequalities limiting the
domain of the foregoing equations are unnecessary and Eq. 8.52 is valid every-
where, as are the remaining equations in this section.

The displacement field associated with the reflected wave is obtained by in-
tegrating Eq. 8.51. We obtain
t-[(2X1-X)/Co]

Uy (X, 1) =-Co j E(©)dC, for2X1-Cot <X £2X, - Co(t~1).
0
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The strain and particle velocity associated with this reflected wave are given by

oUW _ _ E(t_ 2X) —X)

oxX Co
oUw) _ _ ( _2X1—X)
T G Elt =)

The particle velocity in the interaction region is

._oUw  dUw _ _ (_i) (_2X1—X>
X=— +—6t = Co[E t Ca +Elt Ca (8.53)

and the value at the interface, X = X, is

. _ Xi X X
x(X, t) =-2C E(t"'(':;), z;o—.<_tSC—0+'C.

Note that the wave reflection accelerates the material particles on a stress-
free surface to twice the velocity of the particles in the incident wave. It is worth
re-emphasizing the point that the reflected wave transmits stress of opposite sign
to that of the incident wave: A tensile wave is reflected from a stress-free
boundary as a compressive wave, and vice versa.

Reflection of a wave incident on an immovable interface can be analyzed as
was done for the stress-free surface, except that the analysis is carried out in
terms of the particle-velocity waveform rather than the stress or strain wave-
form.

Graphical Solution. The foregoing discussion and analysis suggests a graphi-
cal method of analyzing the wave interaction at a stress-free surface. Equa-
tion 8.52, representing the superposition of a left- and a right-propagating wave,
with the left-propagating wave being an image of the right-propagating wave
that has been reflected right-to-left, changed in sign, and translated to the right
of the reflecting boundary by an amount that matches the distance of the left-
propagating wave from this boundary. These waves propagate in their respective
directions at a speed Cy, and the complete solution of the problem is their sum.
This suggests the graphical procedure illustrated in Fig. 8.10 for solving the
reflection problem. The graphical procedure involves marching the incident and
reflected waveforms toward, and through, the boundary from each side. To
obtain the solution, the waveforms are advanced toward the boundary in equal
steps, beginning at the same distance. In the region in which they overlap, the
interaction region, the solution is simply the sum of the two waveforms and
can be obtained by adding the amplitudes of the incident and reflected contribu-
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tions at each value of X. Once the left-propagating wave moves past the right-
propagating wave, the reflection is complete and the left-propagating wave
comprises the entire solution, which is valid until this wave first encounters the
boundary at X =0. The subsequent reflection at this boundary can, of course,
be analyzed by a procedure similar to that just discussed.

A

L3Y1

1]
[}
before interaction \ v X
1]
1

v

— >
W X
during interaction
V1
<_\V_
A A
h P

after interaction

Figure 8.10. Snapshot sequence of a stress pulse interacting with an unrestrained
surface. The figure illustrates the graphical method of solving problems of this class. The
portions of the figure to the left of the vertical line designating the interface correspond to
the real situation, whereas the portions to the right of the interface correspond to the
imaginary waves used to generate a solution satisfying the condition that the normal
stress vanish on the boundary.

The graphical method can be applied to analysis of reflection of a wave inci-
dent on an immovable boundary as was done for the unrestrained surface, except

that the figures involve the particle-velocity waveform rather than the strain
waveform.

8.4 Wave Interaction at a Material Interface

When an elastic wave encounters an interface at which materials having differ-
ent properties are joined, an interaction occurs that produces both transmitted
and reflected waves.
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Consider the case shown in Fig. 8.11. It shows two material slabs of differing
density and/or longitudinal elastic modulus that are joined at X = X and that
are unstressed and at rest in the region ahead of a wave incident on the interface.

A
, Material 1 Material 2
x=0 x=0 N
) =0 ty =0 40(& \
ohe, 7 A
ted & LS
%VG(IL & &’
) R o
x=0 i*\//
tn =0 47
@xW“"e(m
t o x=0 X1/Co 220
1 =0 t; =0
0 X, X

Figure 8.11. Reflection at a material interface.
A boundary condition to be imposed at the interface is that the two materials
remain in contact,
x(X1%, H=x(X1, D). (8.54)
Since the interface has no mass, the stress must also be continuous at the inter-
face. The stress is given by the equation
 =pr C()ZUX(X, 3] (8.55)
for the material on each side of the interface, but with the values pp =pir and

Co =Cyo for material 1 and po =par and Co =Cy for material 2. With this,
the stress continuity condition becomes

Pir Gid Ux (X1+, B = por Cyf Ux (X1, 1) (8.56)
The incident wave is given by Eq. 8.41,
t—(X/C10)

Uar)(X, £) = —Cho j E(9)d9, (8.57)
0

which is valid in the incident-wave region shown on Fig. 8.11. Differentiation
provides the strain and particle-velocity waveforms
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6U(1R) =E(f—£)

ox Cio
(8.58)
oUur _ ( _L)
or Cio E\! Co J

The transmitted wave is a right-propagating wave excited by the interfacial
boundary conditions 8.54 and 8.56, and the reflected wave will be a similarly
excited left-propagating wave. Designating the reflected and transmitted waves
Ur2) (X, ) and Uy (X, £), respectively, we have

= _2X1—X)
Uary (X, Hy=Uav) (f i

and
Uty (X, 1) = Tim) [t——c%-xl (ElTo"élEE)]
in the wave regions shown on Fig. 8.11. In these expressions
Tn©=- [ E@ds, Tan©=0,
and the constant terms have been chosen so that the argument values are posi-

tive.

Substituting these results into the condition for velocity continuity, Eq. 8.54,
yields

OUR) (X1, 1) | oUaLy(Xh, ) _ 0U@r)(X), B
+ - B
ot ot ot

or
~Cio E(8)+ Uiy (&) =Ulwr) (8), (8.59)

for Cio X1 <t<£Co X1+, and where & =¢—(X1/Clo). Similarly, the condi-
tion for continuity of stress at the interface becomes

oUGr) (X1, 8) | oOUar) (X, 1) oU@r) (X1, 1)
leCI(Z) ( 6X + aX ) = p2R Cz% T’
where Cio X1 <t<Co X1 +71,0r
Pir Ci3 (E &+ —C—'—ll_o- [7('1L) (E)) = - p2r Cao Ular) (§) . (8.60)

Simultaneous solution of Egs. 8.59 and 8.60 yields
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T ©=-Co Z=2 E@®
(8.61)
Ulary (§) =~ ZCIO Z' E®),

where we have introduced the mechanical impedances (or simply impedances)
Zi=pir Cio and Z; =por C0.

With this, the stresses become

mar) (X, ) =2Z1Cio E(t— %’T)

272, Z -
tier) (X, 5 =Co 7 ~:—Zzz E[t—-é\;—o—+X1 (ggw—?gs—o)] (8.62)

(% -Z 2X1- X
fuan (X, B = - Cro 244222 (t_ - )

L +2Zs G

in the wave regions. Similar relations can be obtained for the particle velocities:

. X
xary (X, 8) =—Co E(f—a)

ey (X, ) = - Cio o221 _ E[t——)—(—+X1(M)] (8.63)

Zi+Z, C2o Cio Cao
_ AR ( 2X, —X)
xan (X, ) =-Clo 757 E Cro

in the wave regions. To obtain the relative strengths of the various waves it is
useful to evaluate these functions at the material interface X = _X;. We obtain

hiary (X1, 1) =Cio Z3 E(t—-——-)

422 p(;- 1)
fhier) (X1, £) = Cio 717, E Cuo (8.64)

Cio Zi(Z-22) E(t—ﬁ)

fiany (X1, £) =— 7142, Cio

and
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. X
xar) (X1, ) =—Clo E(f“CT:)‘)

. _ 27 ( _&)
*2r) (X1, ) == Cro mE '~ G (8.65)

: _._ A4 (t_ﬂ)
xay) (X1, ) =-Cio 7 7722 E Cro)-

From these relations we see that the strengths of the transmitted and reflected
waves are related to the incident wave by the equations

27
iRy (X1, 1) = +222 mar) (X1, 1)
(8.66)
fiary (X1, 1) =— g; ;gz higry (X1, 1),
and
X(2ry (X1, 1) = leflzz xRy (X1, )
(8.67)
. Z1—2Z2 .
xay) (X1, )= -Z:—+Z-§~ *ar) (X1, 1),

where ¢ falls in the interval Cio X1 <t<Cio X1+ 71, and where the impedance
ratios are called transmission and reflection coefficients, respectively.

Note that when Z; = Z; no wave interaction occurs; The transmitted wave is
the same as the incident wave and there is no reflected wave. (However, the
speed of the transmitted wave may differ from that of the incident wave unless
the density and wavespeed are both the same for the two materials.) The case of
an unrestrained boundary lies at one limit of the range of possible materials, that
in which the incident wave encounters a void. At the other extreme, the incident
wave propagates through an elastic material toward a rigid, immovable body.

In the limit that material 2 is a void its impedance is zero, Z> =0 . The fore-
going results show that the reflected wave is of the same amplitude as the inci-
dent wave, but of opposite sign:

mary (X1, 0 = - thiar) (X1, 1),  xaLy (X1, ) =- xar) (X1, 1) .

Of course, the transmitted wave is meaningless in the absence of material in
which it can propagate. Since the interfacial stress is the sum of the incident and
reflected stresses, we see that it vanishes, as expected at an unrestrained surface.
Similarly, the particle velocity of the interface during the reflection is twice that
of the incident wave.
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In the limit that material 2 is a rigid, immovable body, its impedance is infi-
nite and the reflected wave is of the same amplitude as the incident wave:

fuary (X, B = fuary (X1, ), xauy (X1, 1) = —xar) (X1, 1) .

The interfacial stress during reflection is twice that of the incident wave and the
particle velocity is zero.

8.5 Exercises
8.5.1. Derive Eq. 8.4.

8.5.2. Make the calculation required to obtain Eq. 8.17 from the results preced-
ing it in the text.

8.5.3. Prepare an analysis analogous to that of Section 8.3.1 for an immovable
boundary, i.c, one at which x =0 for all . Note that the peak stress at this
boundary during the interaction is twice that of the incident wave.

8.5.4. Devise a graphical method of solving the problem of wave reflection at
an immovable boundary and work out an example.

8.5.5. Describe, using the graphical method, the response of a stack consisting
of numerous plates all of the same material and each of thickness L to impact by
a single plate of thickness L. What if the impacting plate is of thickness 2L or
3L?

8.5.6. The presentation in the text of the graphical method of solving linear
plane-wave problems was based upon Eq. 8.52 for the displacement gradient
and, thus, focused upon the stress field. One can develop a similar graphical
method based upon Eq. 8.53, which deals with the particle-velocity field.
Discuss, using this graphical method, the response of a stack of thin plates to an
incident triangular compression pulse of width corresponding to several plate
thicknesses.

8.5.7. Explain how the graphical method can be used to solve the problem of a
half-space in which an initial stress distribution is present in a region near the
boundary. This situation can arise when a very brief pulse of energy is deposited
by a laser or x-ray source. When the energy is absorbed in accordance with
Lambert’s law of absorption the specific internal energy distribution decays
exponentially with distance into the material.



CHAPTER 9

Finite-amplitude Elastic Waves

In Chap. 3 we discussed propagation of plane longitudinal shocks, a specific
aspect of nonlinear wave propagation. In Chap. 8, we discussed more general
waveforms, but in the approximation of small (infinitesimal) deformation that
reduced the problem to one of solving a linear equation. Now we consider
smooth uniaxial motions in a more general case in which the equation to be
solved is not linear. We shall not be able to obtain results as complete and de-
tailed as in the foregoing cases, but much can be learned.

The partial differential equations describing nonlinear longitudinal elastic
waves are of a type called quasilinear hyperbolic partial differential equations
(systems) of second order. They have been widely studied, with extensive
results having been reported (see, for example, [28,108]). Much of the analysis
in these references is in the context of gas dynamics, but the application to
plane, longitudinal waves in elastic solids is immediate.

Once the general principles are understood and something is known of the
phenomena we can expect to encounter, we can feel comfortable solving spe-
cific problems by numerical means. One-dimensional problems of the sort that
we shall discuss in this chapter are amenable to numerical solution by an ordi-
nary personal computer.

9.1 Nonlinear Wave Equation

Lagrangian Representation. When a spatially uniform, time-dependent load is
applied to the surface of an isotropic elastic body occupying the halfspace
X 20, a plane longitudinal wave is introduced into the material. This motion is
one of uniaxial strain, as discussed in Sect. 2.2 and described by the equations

x=X+U(X,t), x2=X2, x3=X3. (9.1)
From this we obtain
Ux=Fu-1=(@r/p)-1=G, x=U, 9.2)

where the subscripts X and ¢ indicate partial differentiation with respect to the
variable shown, holding the other constant. The variable G is introduced as a



194 Fundamentals of Shock Wave Propagation in Solids

convenient simplification of notation. Some useful quantities associated with
this motion have been listed in the section cited above.

The governing equations for this case have been given in the Lagrangian
form as Eqs. 2.92. Let us begin our considerations with the equation for conser-
vation of energy, which is

prE€E—t1Xxx =0, 9.3)

when Q=0 and r =0, as we shall assume throughout this chapter.* From the
equation of state, which we can write in the form € = &(G, n), we have

. 0Oe . 0%, 1 : .
=—G+—N=—mG+9n, 94
€=-5 Gnn —_ n o4

so Eq. 9.3 can be written
mG+prON—tyix =0, 9.5

but this can be reduced to
n=0 (9.6)

by using Eq. 2.92;. This means that n is a function of X alone. If, as we shall
assume, the material is initially in a uniform state, then n has a constant value,
the stress relation is independent of X, and corresponds to the isentrope through
this state,

 =t{"(G). ©.7)

The equation for conservation of energy plays no further role in the analysis, and
the problem is set in terms of the remaining two equations, 2.92,,, which we
can write
%t —C(G)Gx =0
9.8)
Gi—xx =0,
where

cxo1dnd 1 dnp

o dp
: _ 1

PdEn PR dUx PR dG

9.9)

When the material is a fluid, it is usual to write these equations in one of the
forms

*Although we shall not discuss the case » 0, it does arise in a variety of practical
problems involving heating by electrical current pulses, pulsed lasers, x-ray sources,
particle beam accelerators, and other devices that can cause rapid deposition of energy
into the interior of material bodies. The restriction Q=0 implies, formally, that the
material is a nonconductor of heat and, practically, that the effects of heat conduction are
assumed to be negligible.
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) 2 g,

C€=—L2dp || (9.10)
Pg dv PR dp

For thermodynamically stable materials the derivatives appearing in Egs. 9.9

and 9.10 are positive [18, p. 135], so CL is a real number (taken to be positive)

that we shall be able to identify as the Lagrangian soundspeed.

Equations 9.8 can be written in either of the equivalent and useful forms

CL(Gi+CLGx)—(x+CLxx)=0
©.11)
CL(Gi-CLGx)+ (Xt -CrLxx)=0,
or

CEUxx =Ust . 9.12)

When experiments are conducted to study solids, sensors are usually fixed to
the material and thus record what happens to the particle at which the sensor is
located. It is for this reason, along with the fact that the equations are simpler,
that problems of solid mechanics are most often analyzed in the Lagrangian
frame.

Eulerian Representation. The Eulerian form of the equations governing
nonlinear plane-wave propagation have been given as Eqs. 2.87, which we write
pr+(px)x =0

(Px) +(pX*)x = (tn)x =0.

(9.13)

The energy-conservation equation has been omitted from consideration for the
reasons discussed above. Equations 9.13 can be written in the simplified form

Pt +pxX+pxs=0
(9.14)
pXt +pXXx +lpx =0,

where we have related the stress to the uniaxial deformation (represented with-
out loss of generality by the density) by the isentrope

f =£{"(p) . (9.15)
Using this equation, we have
(~t)x = £ (p) px, (9.16)
where
dt(n)
et (p)=- ) 9.17)

dp
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We take ¢, >0 and will be able to identify ¢ (p) as the Eulerian soundspeed.

The Eulerian soundspeed measures the rate of progress of a wavelet along
the x axis relative to the motion of the material moving at the velocity x, and is
related to the Lagrangian soundspeed Cp, by the equation

eL =(1+G)CL =(pr /p)CL, (9.18)

reflecting the different distance between corresponding points in the reference
and current configurations that is to be covered in the same time interval.

When Eq. 9.14; is multiplied by ¢r and the result both added to and sub-
tracted from Eq. 9.14, we arrive at the equivalent system

cL[pet+(eL +3)ps J+p[H +(cL + %)% ]=0
(9.19)
erlpr—(eL —9)px ]-p [ 5 —(cL ~ ) i | =0.

The second-order representation of Eqs. 9.14 does not have the simple form of
its Lagrangian counterpart, Eq. 9.12, but the linear approximation to this equa-
tion does take the simple form

Uy —ClUxe =0, (9.20)
where c1 = cL{pr) . This is the equation discussed in Chap. 8.

When experiments are conducted upon fluids, for example in a wind tunnel,
sensors are usually fixed in space and thus record what happens at the sensor
location, x, as the particles move past. It is for this reason, among others, that the
theory presented in fluid dynamics books is usually set in an Eulerian frame-
work.

9.1.1 Qualitative Discussion of Elastic Wave Propagation

Equation 9.12 has the same form as the corresponding equation of the linear
theory, Eq. 8.4, except that the wavespeed is no longer a constant. The nonlinear
equation is similar to the linear equation in that solutions take the form of left-
and right-propagating waves that move through the material at a finite speed.
Characteristic curves define trajectories along which wavelets are transmitted in
the X—¢ or x—t planes. The boundary conditions that can be imposed are the
same as for the lincar equation. Riemann invariants can be determined and used
as in the linear theory.

It is here that the similarity of the two theories ends. Solutions of the nonlin-
ear equation do not enjoy the scaling and superposition properties that facilitated
solution of the linear equation. Functions of the form f(X £CvL¢) do not satisfy
the nonlinear equation, left- and right-propagating waves do not pass through
one another without interaction, and reflection from boundaries changes the
amplitude and character of the wave in ways that are more complicated than was
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the case for the linear equation. The fact that f(X £ CL¢) is not a solution of
the nonlinecar equation suggests that the disturbance changes form as it propa-
gates, and this will prove to be the case. Smooth waves can spread or can be-
come steeper to form shocks and shocks can propagate intact or can spread to
form smooth waves. The behavior of solutions of the nonlinear equation can
usefully be discussed by comparison to those of the linear equation, but the
range of behavior of nonlinear waves is richer and more interesting. Unfortu-
nately, analysis of these waves is sufficiently complicated that computers using
finite-difference or finite-clement programs are required for solution of most
practical problems. However, application of this technology is facilitated if one
is familiar with the results obtained by analysis of some important simple prob-
lems.

9.1.2 Characteristic Curves

Lagrangian Analysis. In our study of the linear wave equation, we discovered
that wavelets are transmitted along lines X +Co ¢ = const., and we called these
curves characteristic lines for the equation. Since the coordinate lines
X =const. and f=const could be transformed to lines of the form
X £ Co t=const., the latter could be used as a coordinate system replacing the
former. A similar situation arises in connection with the nonlinear equation,
except that the characteristic curves for the nonlinear equation are not straight
lines, reflecting the fact that the wavespeed is not constant. Indeed, the slope of
the characteristics at a point depends upon the displacement gradient at that
point and, since the displacement gradient is not known until the problem is
solved, the characteristics must be determined as part of the solution.

The analysis of this subsection is carried out using the Lagrangian form of
the theory as represented by Eqs. 9.8. Let the characteristics be curves
X* =const. and ¢* =const. that are related to X and ¢ by equations of the form

X'=X"X,H) and I"=£(X.0). 9.21)

It is apparent that these characteristics must be such that each point (X, ¢) is
uniquely related to a point (X #*) if we are to be able to proceed with the
analysis. This means that Eqs. 9.21 must be invertible to yield expressions of the
form

X=XX"t") and t=¢(X"1"). 9.22)

We shall see that this condition is met in regions where the motion is smooth.
The condition for invertibility is that the Jacobian of either transformation does
not vanish. For example, we can require that

J=Xytp—Xptyr 20, (9.23)
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We expect the characteristic curves to have slopes associated with the wave-
speed, as in the linear case. In the nonlinear case the wavespeed varies, so we
are restricted to use of the local analog of Eqs. 8.44, which we can write

adXx dXx
—=CL(G d —=-CL(G 9.24
o L(G) an 7 L(G), (9.24)

respectively. When these equations are expressed in terms of the characteristic

coordinates, we have
X+ —-CL(@)ty=0 on ¢ =const.
¥ * (9.25)
Xp+CL(G)tx=0 on X" =const.

Note that when CL(G)=Cr =const we recover Eqs. 8.44 by integration of
Egs. 9.25.

Differentiation of x(X”, ") and G(X™, ") with respect to X and ¢, using
the chain rule, gives

Frmiyge Xi ke £, iy =dyge Xy +ip fy

(9.26)
Gi=Gy* X1 +Gp 1, Gx =Gy Xx +Gp 1.
From Eqgs. 9.21 we have
1=Xk Xy +Xit o, 0=X¥%Xp+Xitp
. 9.27)
L=ty Xp +1ity, 0="r% Xy +11 1y,
S0
Xy=t013, Xi=-Xp/J
(9.28)
fy=-ty1d, i=X,17,
and Eqgs. 9.8 can be written in the form
Gy =CL Gy )t + (X +CL Gy )ty =0
9.29)

Giys —CiL Gy=)tr =Gy +CLG )ty =0

by use of Egs. 9.28 and 9.25. Adding and subtracting these equations, and
adjoining the results to Eqs. 9.25, gives the final expression of the problem in
terms of the equations

Xypr —CL Gy =0

. (9.30)
X+ CL Gt* =0

for the field variables x(X*,¢") and G(X™,¢") and Eqgs. 9.25 for the charac-
teristic curves X = X (X", ") ,and t=t(X"*,1").
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The equations of motion 9.30 can be integrated immediately to give

G
O (M) =% j CL(G")dG'
0

i (9.31)

O (X*) =%+ j CL(G)dG.

0

These functions, called Riemann invariants, are determined by suitable bound-
ary and initial conditions. They are called invariants because they are constant
along curves of constant ¢* and X™*, respectively. This means, for example, that
a value determined for the function

G
i j CL(GdG'
¢

at any point on a curve of constant * remains the same at all points on this
curve.

Adding and subtracting Eqs. 9.31 yields the equations

=g [0 @+ ()]
©932)

G
J‘CL(G')dG’=%[(I>‘(X*)—(D+(t*)]
0

for x and G as functions of X* and ¢*.

The general utility of these solutions is limited because the relationship of
the characteristic coordinates to X and ¢ has yet to be determined, and this de-
termination requires solution of partial differential equations. However, the
complexity of the characteristic form 9.30 of the field equations relative to
Eq. 9.12 or Eq. 9.8 is reduced when we restrict our attention to a particularly
important class of solutions called simple waves, which we shall discuss in Sect.
9.2,

Eulerian Analysis. One can obtain results essentially the same as those of the
foregoing section by analysis of Eqgs. 9.19, the Eulerian form of the wave equa-
tion.

Let us transform Eqgs. 9.19 to characteristic coordinates, x* and *. On the
characteristic curves we have

X * —(CL+jj)tx* =0
. 9.33)
xp +(cL-x)tpx =0,
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or

dx . .
= =cL(p)+x on [ =const.

(9.34)

dx . "
—=-cp(p)+x on Xx" =const.,
dt
where we have chosen to express the deformation in terms of the material den-

sity, p. The fields can be expressed in terms of characteristic coordinates by
equations of the form

p=p(x",1%)
(9.35)
x=x(x", ).
We proceed with the transformation exactly as in the Lagrangian case, arriving
at the result

pr =(=pyxp +pprx,2)j
Px=(—prty +pprt ) j
(9.36)
Xe=(-xxp+xpx )
Xx=(=Xtp +Xpot )],

where j=xpt,» —x,t+ #0 for smooth motions. When these resuilts are
substituted into Egs. 9.19 and cancellation is performed, we arrive at the field
equations in terms of characteristic coordinates,

o cL(p) pr =0
p
9.37)
. C
i - L(p) pp =0,
These equations can be written in the form
p '
AR I a® 4]0
dx om P
(9.38)

p ’
_‘1; X — .‘- E_IZL’de’ =0,
dt e P

and integration gives the Riemann invariants
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p [
J'C+I CL({))dpl=(D+(t*)
p

PR

9.39)

p '

- J. EL(_f’_)dp' =0 (x").
pr P
Adding and subtracting these equations gives the expressions
i= _;.[(I)+(t*)+fl)‘(x*) ]

(9.40)

[ '
c ’ 1 * .
J. a®) gy = o @y-0-(h ]
or P 2
for the field variables in characteristic coordinates.

9.2 Simple Waves

When a continuously varying stress or particle-velocity history is imposed on
the boundary of a body in a state of uniform deformation and motion, a simple
wave is introduced into the material. A simple wave is a solution of the field
equations in a region of the X—¢ or x—f plane adjacent to another region in
which the variables x and either G or p are constant (it is easy to see that
constants form a trivial solution of the field equations). The mathematical
justification of the term “simple” is that the field quantities in a simple wave are
functions of only one independent variable. The simple wave provides a con-
venient setting in which to explore some general aspects of nonlinear wave
propagation. Simple waves are also of interest because they arise in such
practical situations as shock reflection from an unrestrained boundary, A
disturbance introduced into an elastic body can propagate as a smooth wave or
can become stecper to form a shock. Which of these disturbances is produced
depends upon whether the boundary loading produces an expansion or contrac-
tion of the material and upon the slope of the function Cr.(G)or c1{(p).

Let us consider a wave propagating in the +X or +x direction into a region
of uniform motion characterized by x =x-=const. and G =G~ =const. The
wave is produced by imposing the velocity history

x, 1<t
x(0,0)=3 f(@®, t <ttt 9.41)
xt, =2t

on the boundary X =0, with the conditions f(")=x" and f(t*)=x* im-
posed to ensure continuity.
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9.2.1 Lagrangian Analysis

x=x" G=G~
X" = const.

X

Figure 9.1. The X~¢ diagram for a right-traveling simple wave.

The X—¢ diagram for the simple wave problem is shown in Fig, 9.1. The char-
acteristics in the region ahead of the wave can be written

X-CL(GHt=P"("), X+CL(G)Ht=F (X"). 9.42)

Let us choose #* to be the time at which the #* =const. characteristic intersects
the boundary X =0. Then W*(*)=-CrL(G )¢*. Similarly, we shall choose
X* to be the coordinate value, X, at which the X™* =const. characteristic inter-
sects the line £=0. Then ¥~ (X*)= X" and, in the region ahead of the distur-
bance, the characteristics of Eqs. 9.42 take the form

X=CL(GH(t-1tY), X+CL(G)Ht=X", (9.43)
where r* and X* are the characteristic coordinates.

The disturbance introduced into the body at the time 7~ propagates into the
region of uniform initial state at the velocity C.(G™) and the leading charac-
teristic is given by Eq. 9.43, with r* =¢".

Now let us consider the X™ characteristics for 0< X* <o. One character-
istic of this family passes through each point of the positive quadrant of the X—¢
plane and, on each of these characteristics, Eq. 9.31; takes the form

o
O (X")=x+ J. CL(G)dG', (9.44)
0

a value that is actually independent of X* because X~ and G~ each have the
same constant value throughout the region ahead of the wave. This value is
maintained on each X™* characteristic as it enters and passes through the distur-
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bance propagating from the boundary into the material, so Egs. 9.32 can be
written

_ .
=i CI)+(t*)+5c‘+J- CL(G")dG
0

(9.45)

G G~
ICL(G’)dG’=—é- ——(D+(t*)—-5c’+"- CL(G)dG' |,

0 0

L

and we see that the solution in the region occupied by the wave depends only
upon the single characteristic coordinate, ¢*. The foregoing development shows
that any disturbance propagating into a region in a uniform state is a simple
wave.

The Riemann invariant on each of the X™* characteristics has the value

-
i+ I CL(G")dG' . (9.46)

0

Therefore, we have

G G~
X+ I CL(G)dG =5 + I CL(G)dG' (9.47)
0 [}

in the simple wave. We know that x(0,1") = f(t") on the boundary at the time
t =t*, so we can determine the value of G (0, #*)=G" from Eq. 9.47:

G* G~
I CL(G)dG =5 - f(£')+ j CL(G"dG'. (9.48)
0 0

We evaluate the Riemann invariant ®+(#*) for characteristics in the simple
wave from the known conditions at the time at which the characteristic intersects
the boundary. From Eq. 9.31; we have

G G*
x- I CL(G"YdG' = f(t") - j CL(GHdG' (9.49)
0

0

at all points along the ¢* characteristic, in particular at the point where an X*
and a r* characteristic intersect, so adding Eq. 9.47 to Eq. 9.49 and using
Eq. 9.48 gives

i=f(t% (9.50)
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at all points along the r* characteristic. Substituting this result into Eq. 9.49
gives

G G*
J. CL(G)dG = j CL(G")dG, (9.51)
0 0

and we see that the value of G along this characteristic is just its value on the
boundary:

G=G(0,1")=G", (9.52)

with G* being given as the solution of Eq. 9.48.

Since G is constant along each of the ¢* characteristics in the wave region,
they are straight lines:

X =CL(G*(t") (t-1*) . (9.53)

We now know both x and G at all points in the wave, and see that they are
functions of only the single variable ¢*. The leading characteristic (correspond-
ing to the first arrival of the wave at a point) is X =CL(G™)(f—¢") and the
trailing characteristic (corresponding to passage of the disturbance) is
X =CL(G")(t—-t+). Consideration of the region 0<X <Cp(G*)(¢-t+)
behind the trailing characteristic shows that x=x%* and G=G(0,{")=G"
throughout this region.

To plot waveforms as a functions of X for a given value of #, one selects sev-
eral values of r*, determines the associated values of the variable G and of x,
ti1, or any other variable defining the waveform of interest. Then, a set of
values of X determined from Eq. 9.53 forms the basis for plotting the waveform.
An analogous procedure can be adopted to plot waveforms as functions of ¢ for
various values of X

For some purposes it is necessary to determine the X—t trajectories of the
X™ characteristics. In the region ahead of the wave these characteristics are the
straight lines X =—-Cp(G™)t+X*. They enter the wave region at the point
X =Xo, t=1to, given by

Xo=2[x"-c@)Hr]
) (9.54)
X' +CLGHE
2CL(G7)

When an X™* characteristic enters the wave region, the value of G changes with
position along the characteristic and the characteristic becomes curved, with its
shape depending upon the function G(X, t) in the wave region. The X* char-
acteristic is given as the solution of Eq. 9.25;, which we write in the form
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Xp+CL(G* )Nty (9.55)
Differentiation of Eq. 9.53 with respect to * gives

dX _dC.(f")
dr' dt*

(t~t*)+CL(t*)( dr —1} (9.56)
dt
and substitution of Eq. 9.55 yields

dt+ 1 dCL(’*)t=l 14 1 dcu(t")
dt* 2CL(t") dr* 2 Cu(t*) dt* )

9.57)

The wavespeed, Cr, depends upon ¢* through the relation G(r*) so we can
write

dCy _dCy dG
dt* ~ dG dr*’
but, by differentiation of Eq. 9.48, we find that

dG(™y 1 df (")
at*  CL(G(@Y)) dr*

With this, Eq. 9.57 takes the form

a .
S =y (), 9.58)

where
1 dCL(G) df(t")
2CH") dG  dr

w_L( 1 dCuG)df(t") A
W)'z(l cX¢"y dG  ar t]'

() =~
(9.59)

Equation 9.58 is a linear first-order ordinary differential equation having the

familiar solution
t" t
to(X)+ I \y(t’)exp{ J' (p(t”)dt”ildt’ , (9.60)
I I

where we have chosen the constant of integration f(X™) to be the time at
which the characteristic intercepts the leading edge of the wave. Equations 9.53
and 9.60 express the Xt trajectory of the X™* characteristic in terms of the
parameter t*.

»

t
L") =exp I:— I eHdt
-
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Throughout the foregoing development we have assumed that the wave
spreads as it propagates, as indicated in Fig. 9.1. The condition for this is simply
that the wavespeed Cp(G) decrease as each succeeding part of the waveform
passes a given point, i.c. that

CL(G™) < CL(G") (9.61)

for all #* and r** such that 0<¢* <¢™ <r+. When this condition is not met, a
shock will form, as will be discussed in Sect. 9.5.1. Since Cp (G) is calculated
from the stress relation #;(G) according to Eq. 9.9, the inequality 9.61 imposes
some restrictions upon this function and upon the values of G taken in the wave.

ly /
increasing
g stiffness /
o P
(é / decreasing
g ..~ stiffness
contraction
P / elongation G
decreasing 4 o
stiffness .-~ / 2
P 1]
/ @
19
/ &
L g
increasing 8
stiffness

Figure 9.2. Stress—deformation curves of types that produce both shocks and smooth
waves. The various cases that can arise are listed in Table 9.1.

Several stress—deformation relations are shown in Fig. 9.2. In view of
Eq. 9.92, we see that the soundspeed for the material in the state of deformation
G, corresponds to the shape of the curve at that deformation level. The curves
that bend away from the abscissa yield soundspeeds that increase with increas-
ing deformation, whereas curves that bend toward this axis yield soundspeeds
that decrease with increasing deformation. Several cases arise in connection
with a given wave-propagation problem. The stress response function can have
any of the shapes shown in the figure, and the transition between points on the
response curve can be in either direction. This leads to the possibilities outlined
in Table 9.1.
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Table9.1. Waveforms associated with given stress—deformation curve shape for waves
producing either contraction or expansion

Wave type
Curve shape Stress range Contraction wave Expansion wave
Increasing Tension quadrant Smooth Shock
stiffness Compression quadrant Shock Smooth
Decreasing Compression quadrant Smooth Shock
stiffness Tension quadrant Shock Smooth

Example: Third-order Elasticity. Because of the implicit form of the solution
for the simple wave, it is useful to study an example to see how wave profiles
are actually determined. Let us consider the case of a solid described by the
stress relation 6.21;, which we write in terms of G (recall that smooth elastic
waves are isentropic),

i =CnG+1GBCn +Cm)G* +...=Cu(1+CG+..)G,  (9.62)

where
_3Cn+Gn

C ,
2Cn

a material constant measuring the nonlinearity of the response, is negative for
normal materials.

The soundspeed associated with this relation is

CL=Cr(1+CG+...), (9.63)
where
Cr =(Cu /pR)l/2 (9.64)

is the soundspeed of the linear theory.

We continue our consideration of the wave introduced into material that is in
a uniform state of deformation and motion characterized by G=G~ and
x=x", by imposition of the velocity history of Eq. 9.41 on the boundary at
X=0.

The first step in calculating the simple waveform is determination of the dis-
placement gradient G (0,*)=G" on the boundary at a time ¢ =¢" in the inter-
val 0<t<t+. This quantity is obtained from Eq. 9.48 which, for the case at
hand, becomes
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1+icer . e =22 (14 e+ G, t-<r <t
2 Cr 2

or,

v [E=S@)), g _Lo(ESEY (320 6
G _[ o j_’.G 2C( Cr ] C( Cn )G +...,

(9.66)

where we have taken the expansion to second order in the small quantities G~
and {x~ - f(t*)]/Cr . From Eq. 9.50 we have

*=f@"), t~<t*<rr. 9.67)
The ¢* characteristics are given by
X=CL@GH(-1t*), t~<<t+, (9.68)

As we have seen, G and x are constant along each of these characteristics,
maintaining the values they have on the boundary, G* and x*, respectively.
Substituting Eq. 9.66 into Eq. 9.63 gives

CL(G*)=CR[1+c("“c—f(’)+6*)+...}, (9.69)
R
so the advancing characteristic intersecting the boundary at ¢ =¢* is given by

X=CR{1+C(LM+G‘]+...](t—t*). (9.70)
Cr

The leading characteristic, corresponding to * =¢~ is, since f(f)=x",
X=CrI+CG +...]¢t~-1t), 9.71)

and the trailing characteristic is

X=CR[1+C[x_£Rx++G—]+...:|(t—t+). (9.72)

As we noted previously, the wave must spread as it propagates if it is to be a
simple wave as presented. Accordingly, we must have

—Cf@*)2-Cf(t*) 9.73)
for all ¢* and ™ such that 0 <f* <™ <t+. As is apparent, this imposes condi-

tions on both the material response, as represented by C, and the imposed dis-
turbance, as represented by f(7). For normal materials, C <0and we must
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have f(r*)= f(**), whereas, for the unusual materials for which C >0, we
must have f(#*) < f(¢**) if the disturbance is to propagate as a spreading wave.

As an example, we present an X—f diagram and a sequence of waveforms for
the case of a boundary loading given by

0, £<0
20, ) =1 X*(t/t), 0<t<f (9.74)
i, t2t

where ¢+ and x+ are given constants. Evaluating Eq. 9.66 for this case gives

o e a2
G =G -2 L o[ X l0G-_S(EL0) L ()
Cr 1+ Cr t* 2\Cgr t*

and, from Eq. 9.67,

t*
¥ =yt
popl ©.76)
\
3] 34
& .
32— 0;2_ t=15pus
T t=10pus
17 =050 s \
AN
0O+—r—yv— 71— 771 7> 0 T T T T T
0 10 20 o 2 4 6 8
X, mm X, mm

Figure 9.3. X—t diagram and waveforms and for a compressive disturbance propagating
in fused silica subjected to an imposed boundary velocity ramping linearly from zero to
250 m/s in 1 ps. The relevant properties of this material are pr =2460kg/m3,
C11 =77.4GPa , and Cyyy = 550GPa [51]. This material is anomalous in that a compres-
sion wave propagates as a simple wave rather than a shock for stresses in the range 0--3
GPa, the range in which the foregoing elastic moduli are valid.

9.2.2 Eulerian Analysis

We now consider the simple wave problem posed at the beginning of Sect. 9.2,
but using the Eulerian coordinate, x, in place of the Lagrangian coordinate, X.
Let us suppose that the boundary is subject to an imposed velocity history, as
given by Eq. 9.41, with f(¢) > 0. This boundary condition produces a smooth
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compression wave. In a normal material, the Eunlerian wavespeed, ¢y increases
with increasing compression, leading to an x—¢ diagram such as that shown in
Fig. 9.4. The converging characteristics will eventually intersect, leading to
shock formation. We shall address this issue in Sect. 9.5.1.

0 1 2 3 4  x,mm

Figure 9.4. The x—t diagram for a right-traveling simple wave. The drawing illustrates a
convergence of the characteristic rays that is associated with steepening of the waveform.

Using Eq. 9.34, we see that the characteristics in the region ahead of the wave
take the form

x=[{eL(P)+x 1t+y*(f*) on ¢ =const.
.77
x=[-cr(P)+x J#+y (x*) on x*=const

Let us parameterize these characteristics so that ¢* is the time at which the
characteristic ¢ =const. intersects the boundary and x* is the value of x at
which the characteristic x* = const. intersects the line £ =0 . Then

Y () =xp () ~[eL(p)+x7]1"

(9.78)
() =x",
and Eqgs. 9.77 take the form
x=[{eL(p)+x J(-1)+xp(t*) on ¢ =const.
9.79)

x=[-cL(p™)+x" ](¢+x") on x"=const.

Evaluating the Riemann invariants (Eqs. 9.39) in the region ahead of the wave
gives
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" o)
).H.“ L2 dp =0 (1)

or P
(9.80)

" o)
- j L) dp = o (x*).
or P

Since the Riemann invariant maintains its value when the associated x* = const.

characteristic is extended into the region of the x—¢ plane occupied by the wave,
we have

P ' P 1
_I cL(p)dp'=5¢‘—J‘ eL®) 4 ©.81)
or P ox P

in the simple wave.

Since x = f(¢) on the boundary for 0 << ¢+, we have the equation

t
xp () = j f()dr for O<t<rt (9.82)
0

for the position of the boundary at early times. On this boundary, Eq. 9.81
becomes

P eL(p) e ®")
j LA dp’=f(t)—5c“+j ———Lpf’ dp’, (9.83)
p

PR PR

a result giving values of p(¢z) on the boundary. Since we are identifying the time
at which the characteristics for right-propagating wavelets intersect the bound-
ary as t*, it is useful to write Eq. 9.82 in terms of this parameter:

p* p e !
J‘ VO o=ty i +J' ) 4, (9.84)
PR p P

PR
where p* =p(£").

We evaluate the Riemann invariant ®* (") for characteristics in the simple
wave from known conditions at the intersection of the characteristic with the
boundary. From Eq. 9.39; we have

P’ )
fD*(t*):ic*+J' al) 4y,
or P

so this equation can be written
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P f P* '
i+ J' CL(E) )dp’=f(t')+ J. CL(E) )dp' , (9.85)
P or P

where x* = x(t") = f(t*) . From Egs. 9.81, 9.85, and 9.84 we find that

=", (9.86)

i.e., the value of x along the entire characteristic #* is constant and equal to the
value imposed on the boundary at the time ¢ =¢*. Substituting this result into
Eq. 9.85 gives

J“’ L) 4o - I" eL(®) 4y
’ pr >

Pr P PR

showing that p =p”, i.e., the density is also constant along the characteristic and
equal to the value attained on the boundary, as calculated from Eq. 9.84.

Now, let us return to Eq. 9.34; for the * characteristic. Since x =x* and
p =p* along the entire characteristic the equation becomes

dx o o
—=c +x*,
yr L(p)

and integration gives

x=[cL(p)+x" J(t- 1) +xa (") (9.87)

as the equation defining the ¢* characteristic.

Although calculation of the trajectories of the x* characteristics is not re-
quired to obtain the simple wave solution, they will prove useful in discussing
shock formation. The x* characteristics, called cross characteristics because
their trajectory crosses the simple wave, are determined by solving Eq. 9.34,.
Since x* and ¢ are most naturally expressed as functions of ¢*, it is convenient
to adopt the representation

x=x(") (9.88)

for these characteristics. The derivative dx/dt can be written

dx

dr
ax_2 (9.89)
dt  gr

dt

so we have



9. Finite Amplitude Flastic Waves 213

fé:fﬁitr (9.90)
dt” dt df
and substitution of this result into Eq. 9.34 gives
dx dt
=[x({")-c( . 9.91
s [x()—c( )]dt* 0.91)

Substituting the derivative of Eq. 9.87 with respect to * into Eq. 9.91 gives

dx ENPE U]
SEOE=T(), (9.92)

with

(") = 5| L 20D
2e()| dt dt
(9.93)
‘P(t*)=%+<l)(t*)t*.
Equation 9.92 is a linear, first-order, ordinary differential equation that has the
solution

I - s v
') = exp[— j CD(t)dt] X + J |:‘P(t') exp[ j o) dt]:i dr'y, (9.949)
0 2Cs 0 0

where we have imposed the initial condition

x*
((0)=—,
© 2Cg
with Cp being the soundspeed of the material ahead of the wave. All of the
functions required to evaluate ®(r*) and ¥ (*) can be obtained from the
isentrope, the associated isentropic soundspeed, and the simple wave solution.

Numerical evaluation of Eq. 9.94 then leads to the cross characteristics.

(9.95)

A similar analysis lcads to trajectories of the material particle positions. In
this case, the differential equation defining the trajectory is
dx

. 9.96
ik (9.96)

and the analysis leads to the trajectory

tn t* t’
t(t ) =exp| -2 I o@Hdt' @+ I [28@(t")+1] exp]| 2 -[ o @Hdt' | |drt"
0 Ce 0 0

9.97)
through the simple wave, where x(0) is the particle positionat t=0.
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Example. Let us consider the evolution of a smooth compression wave propa-
gating in a normal material characterized by the Hugoniot Us =Cg +Sx . and a
Griineisen parameter of the form y=yr(pr/p). Shear stresses are neglected.
We suppose that the material is undeformed, unstressed, and at rest in its initial
state. We take

0, <0
xp(H) =3 X1, 0<t<tt
xt, >t

for the boundary condition producing the wave. The x—¢ diagram for the prob-
lem is shown in the left panel of Fig. 9.5.

A
g '95 =S
2 § ¥ S
& § - {\
Q )
3 & 5? A
- g & E g 1=125ps
M £ 84 1=1.00
~ a -
x \ £=0.75
400“5 )
£t \**% t=0.50
Lag g t=g‘2s\
S-
0 i j T { T T | |
0 1 2 3 4 5 0 2 4 6
X, mm X, mm

Figure 9.5. The x—t diagram and density waveforms for a right-propagating simple
wave in copper. The boundary velocity is assumed to increase linearly from zero to 1000
m/s over the time interval from zero to 1 ps and to remain constant at 1000 m/s there-
after.

Since the disturbance is a smooth wave, the compression process is isen-
tropic, with the isentrope being given by the equation

1+(S~-vr)A’

(I_SAI)3 exp (_YRAI)dA, b (998)

A
p™W(A) =px Cg exp(yrA) J-
0
where A=1-(pr /p). The soundspeed derived from Eq. 9.98 is given by

_p 1+(S-1R)A |

The density at the boundary is obtained from Eq. 9.83 which, for the case at
hand, is
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() '
j CL;," ) dp'= 1. (9.100)

PR

The integration required to solve this equation must be performed numerically,
but once this is done, p(f”) is easily obtained. The particle velocity on the £*
characteristic is x = f(f*), as given by Eq. 9.86. With these quantities in hand
the characteristics, as given by Eq. 9.87, can be plotted. A sequence of density
waveforms representing this solution is shown in the right panel of Fig. 9.5.

An important point to note from this figure is that the waveform becomes
steeper as the wave propagates into the material. This is characteristic of com-
pression waves propagating in normal materials, and leads eventually to forma-
tion of a shock, as will be discussed in Sect. 9.5.1. As a preliminary to this, we
calculate the time and place at which the waveform develops a vertical tangent.

The particle-velocity waveform at a given time, f, (regarded as a fixed pa-
rameter) can be represented by an equation of the form

x=x("(x;1)),

so its slope can be written

dx(t")
Ox(x%0) ar’ ) (9.101)
ox dx(t, 1)
dt*

The denominator in this expression is obtained by differentiating Eq. 9.87, and
is

ax(t, 1) [ch(t ), 4

dxs(t")
or' dr dr* T

](t My—c () - x(t") + =22 (9.102)

The last two terms cancel in accord with the solution in the simple wave region,
and substituting this result into Eq. 9.101 gives the equation

dx(t")
& (x, 1) _ ar (9.103)
> .
x I:dc;t(t) dx(t):l(t ) —en ()

for the slope of the waveform. The vertical tangent occurs at the time when the
denominator vanishes,
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. cL(t™)
[T A Db S A—
der () N dx(t")
dr* dr*

(9.104)

The corresponding value of x, as obtained from Eq. 9.92, is

xsz(t,)+cL(t Meo () +x(t )]. (9.105)
de (") N ax(")
dt* dr

For the example problem that we have been discussing, this point is on the
characteristic * =0, and fallsat =1.315us and x =5.181mm.

9.3 The Centered Simple Wave

In the preceding section we considered the simple wave produced by application
of a continuous stress or particle-velocity history to the boundary. We now want
to consider the case of sudden load application. When a stress or particle-veloc-
ity step is applied to the surface of the halfspace a shock, a centered simple
wave, or a wave combining these two types of disturbances, is introduced into
the body. Which of these disturbances is produced depends, as with simple
waves generally, upon whether the boundary loading causes an expansion or a
contraction of the material and upon the shape of the function Cy (G) .

uniform final
state

uniform initial s tate
x=x" G=G~
t*

-

b ¢

Figure 9.6. The X—r diagram for a centered simple wave.

Lagrangian Analysis. The X-¢ diagram of Fig. 9.6 shows a wave that is
spreading as it propagates, i.c. the leading edge of the waveform propagates
faster than the trailing portion. If the opposite were true the disturbance would
be a shock.

The X~ diagram of Fig. 9.6 corresponds to initial conditions
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‘((X,N=%", G(X,00=G~ for Osr<rt (9.106)
x(X,H)=x", ,0)= 0 .
X 20,

describing a material in a state of uniform deformation and motion. The bound-
ary condition under consideration is

x—, t<t*
#0,n={"" (9.107)
x*t, =2t

As in the case of the linear problem of Chap. 8 and the nonlinear problem of the
previous section, the wavefront advances into the material at a constant speed
CL(G7). The material ahead of the wave, i.e., material in the region
X >CpL(G7)(t—t*), remains in its initial state. The material behind the distur-
bance will also be in a uniform state corresponding to the velocity imposed on
the boundary and some, as yet undetermined, deformation G*. Since we are
seeking a smooth, spreading waveform, let us consider the case in which
CL(G )2 CL(G)2CL(G™) for all G in the interval between G~ and G* . The
trailing edge of the wave advances into the material at the rate CL(G™), so the
wave itself occupies the wedge CL(G*)(t~1*)< X <CL(G7)(t—t*) shown on
the diagram. In the case of the simple wave studied in the previous section, the
leading and trailing characteristics of the wave intersected the boundary at the
times of initiation and termination of the imposed load variation, with the char-
acteristics within the wave intersecting at intermediate points. The discontinuous
loading corresponds to the limit in which the initial and terminal characteristics,
as well as those in between, intersect the boundary at the time of application of
the load step. Following the lead of the previous work, we seek a solution of
Eqgs. 9.8 that is constant along the advancing characteristics, which can only be
rays through the point X =0, ¢=¢*. A solution of this form will depend upon
the single variable

In this case, the wave equation, in the form 9.8, becomes

dG(Z)

7 dx(Z)

2
a7 +Ci(G) ———

=0
(9.108)

,46(2)  di(2)

dzZ dz =0.

Elimination of dx/dZ from the first equation of this pair gives
dG(Z)

(22 -CLO)] =0,
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which can have a nontrivial solution G(Z) only if the coefficient vanishes:
Z?2 - C¢ =0 . Since we are seeking a solution in the form of a right-propagating
wave, we choose the positive square root, thus obtaining an implicit solution

CL(G)=+Z (9.109)
for G(Z). Substitution of Eq. 9.109 into Eq. 9.108, gives

dx(Z) N dG(Z) _

az v %
or
%:-Z, (9.110)
from which we obtain
J'C:—jGCL(G’)dG'+Sc‘, (9.111)
o

where the constant of integration has been chosen to ensure satisfaction of the
condition x=x"and G=G~ that matches this solution continuously to the
solution in the region ahead of the wave. Denoting by G+ the value of G in the
region behind the wave, we find that it is given implicitly by

G+
it =— J. CL(G)dG +x~, 9.112)
-

where x+ is the imposed boundary velocity. This completes the solution of the
problem, since Eq. 9.109 can be inverted to give G as a function of X /(f —1*).
Then, for any particle and time X and ¢ in the wave, the integral in Eq. 9.111 can
be calculated, thus yielding x . In the next section, we shall consider the possi-
bilities that arise if Eq. 9.109 cannot be inverted to yield G[X/(r—1*)].

In the wave region the X™* characteristic must satisfy Eq. 9.25,. Since the
solution in the wave region is given by Eq. 9.109, CL(G) =X /(¢t—-1*), we seek
the solution of

ax __ X _
VT (9.113)
that passes through the point (Xo, fo) given by Eq. 9.54. The solution to this
equation is

x=b

‘tﬂ Xo, ©.114)
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and we see that the X™* characteristics are hyperbolas. If we write Xo and o in
terms of X™*, t*, and G~ this result takes the form

[xr-cuenHr)’
TACLGHE-1")

(9.115)

This characteristic leaves the wave region at the point (X1, 1) given by
X*-CL(G)*
2[cLGycuGH]”

_ 1] Cu(@Gh)
2

h=r+

(9.116)

1/2
= X*-CL(GH"|.
CL(G) i| [ @) ]
Example: Third-order Elastic Response. To make the foregoing analysis
more explicit, let us consider the case when the soundspeed is given by Eq. 9.63.
The displacement gradient is obtained as a function of X and ¢ by substitution of
this relation for the soundspeed into Eq. 9.109 and solving for G:

G:CICR [;_X—f—CR]. ©.117)
Substitution of Eq. 9.63 into Eq. 9.111 and integration gives
i=% -Cr [141C(G+G) [(G-6), (9.118)
or,
¥= i ek [CI% —( X*T}a{nlca‘)a‘. (9.119)
2CCr -t 2

The value of G in the region behind the wave is determined by substituting the
boundary condition x(0, t*)=x* into Eq. 9.118 and solving for G=G*. The
result is

G* =[1+c("‘+“"—]}G‘—[1+9(*+"x_JJ[*+"x_]. (9.120)
Cr 2 Cr Cr

With this, the equation for the leading characteristic is

X=CRA+CGH(-t"), (9.121)
and for the trailing characteristic we have
X=Cr(1+CG*)(t-1).

The Xt diagram and waveforms for a specific case are plotted in Fig. 9.7.
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Figure 9.7. When a slab of fused silica that is at rest and undeformed is impacted in such
a way that a shock producing a state characterized by the particle velocity x* =250 m/s is
introduced into the material, it spreads into a centered simple wave of the sort discussed.
This figure shows the X—# diagram and several waveforms for the problem.

Eulerian Analysis. This same centered simple wave problem can be analyzed
using Egs. 9.19, the Eulerian form of the wave equation. As with the Lagrangian
analysis, we seek a solution that depends upon the single variable

z= -’ti . (9.122)
In this case, Egs. 9.19 become
(cL;p) Pz +Xz )(cL +x-2)=0
(9.123)
(CL;p) pz—X; ) (cL—x+2)=0.
On the advancing characteristics z =¢; + X so we must have
s — cLép) p:=0, (9.124)
or,
Pap)
- j —rtdp'=x" (9.125)
o P
on z =const.

Example: Ideal Gas. Since the Eulerian analysis is usually applied to gas
flows, let us consider the case where the centered simple wave is one of decom-
pression of an ideal gas. Let the initial state be one in which the density is p-,
the particle velocity is x~, and the pressure is p~ . For an ideal gas, we have
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p=p" (—ppf)r, (9.126)

leading, via Eq. 9.17, to the Eulerian soundspeed

T
¢ = ’ -p—p : 9.127)

The soundspeed in the material into which the wave is advancing is given by

—
ei= ]2, (9.128)
p
so Eq. 9.125 becomes
- (r-1)/2
=g 2Ck 1—(1_) : (9.129)
T-1 p

When Eq. 9.126 is substituted into this relation we obtain an expression for x in
terms of the pressure in the wave:

- (F-1)/2T)
P 12“CL1[1_(FP‘") ] (9.130)

Substituting the boundary pressure for p gives an expression for the particle
velocity on the trailing characteristic of the wave

= (r-1)/(2T)
xB=x-—%[l—(%) ] (9.131)

On the advancing characteristics z =cp + %, or

p \(I-D2 p \({T-n/2T
z =cL‘(—_) + J'c=cf(—_) + X. (9.132)
P P
Substituting this into Eq. 9.129 gives
. 2 - I'=1.
=t (z-C) +—— X~ 9.133
TR ©.133)

an expression for the particle velocity in the wave as a function of z=x/¢.
Substitution of this result into Eq. 9.130 gives the pressure relation

p (I‘—l z—)‘c“+ 2 )2r/(r—1)

P
and, using Eq. 9.126, we obtain the density relation

(9.134)

- '+l oo '+l
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p

(9.135)

p (I‘—lz—a’c‘+ 2 )W-‘)
C+l oo T+l '

To complete the solution we need to determine the range of z over which it is
valid. This is done by substituting the boundary condition p=pp into
Eq. 9.134 and solving for the value of z defining the trailing edge of the wave.
We obtain

e pe\(T-Her)
e _ Ps _ 9.136
25 =% r_l[z @+ (£2) 9.136)
The solution occupies the range
- (C-1)/2F)
i - CL1{2~(I‘—1)(-§_3) ]s%sqm—. (9.137)

The region behind the wave is one in which p = pg and x = xp . The boundary
of the material is at xg = xpt for 1>0.

Eulerian Analysis of Waves in a Shock Tube. A shock tube is a device in
which two columns of quiescent gas are held at different pressure by a separat-
ing diaphragm. The initial pressure distribution is as shown in Fig. 9.8. Wave
motion is initiated when the diaphragm is suddenly shattered, placing the two
gas columns in contact. The wave motion is produced as the high-pressure gas
begins to expand toward the low-pressure gas. The expansion of the high-pres-
sure gas takes place in a right-propagating centered simple wave and compres-
sion of the low-pressure gas is effected by a left-propagating shock; the x—r
diagram for this process is shown in Fig. 9.9

p Haed

X

Figure 9.8. Pressure distribution in a shock tube at the instant, =0, of diaphragm
rupture.

The pressure and particle velocity have the (as yet undetermined) constant,
uniform values pp and xp in the region between the waves. The surface at
which the two gas columns are in contact moves at the particle velocity xp.
Although the pressure and particle velocity are continuous at the contact surface,
the mass density (and the temperature, specific entropy, and specific internal
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Figure 9.9. Eulerian space—time diagram of wave propagation in a shock tube. This
drawing is made for the case in which air at a pressure of 100 atm and a temperature of
293K expands into a column of air at a pressure of 1 atm and the same temperature.

energy) is discontinuous at this surface. The state of the material in the region
between the shock and the trailing characteristic of the simple wave is estab-
lished by matching these two solutions. The jumps at the shock must satisfy the
conditions 2.110; 2, which we can write
(PE—pP")us=ph¥n
(9.138)
Ph¥BUS=PE X5+ pp-p*.

In addition, the state of the shock-compressed gas must lic on the Hugoniot,
which is given by Eq. 5.59. When this equation is evaluated at the state in
question, it provides the relation

+ T+Dpg - -Dp*
T+Dp* -(T-Npg

(9.139)

between the pressure in the region and the mass density in the part of the region
between the shock and the contact interface.

In order for the pressure and particle velocity to be continuous at the contact
interface the values of these variables obtained from analysis of the shock, as
given by Eq. 9.142,, must agree with the values obtained from the simple wave
analysis (Eq. 9.130 with x-=0). The pressure and particle velocity at the
trailing edge of the centered simple wave satisfy the equation

det (T-1)A2T)
%8 =—£[1-—(2) ] (9.140)

-1 P

The four equations 9.138-9.140 relate the unknown quantities pf, ps, Xs,
and us.
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Let us begin solving these equations by expressing p and ug in terms of
p3 and pg. Equations 9.138 can be written in the form
_ PE¥B

pp—p*

g =Lo(22-1)(1-5)
2=L_(P52_\(1-E),
Bopt\p? Ph

and Eq. 9.139 can be used to eliminate pj; from these expressions. The results

are
pPB 2
N ==-1
., _2p p

*B T
p (r+1)—§—§i+(r—1) (9.142)

Us
(9.141)

.
u§=2[’?|:(F+l)%+(F—l):|.

Equation 9.142, isthe p—x Hugoniot for the gas, centered on the state ahead of
the shock. Equation 9.140 represents the p—x path of the isentropic decompres-
sion that occurs in the simple wave. Simultaneous solution of these equations,
which is best accomplished numerically, completes the analysis. A plot of a
Hugoniot and isentropic paths starting at three different initial states is given in
Fig. 9.10.

-1.0
0.8
F0.6
0.4
0.2

p,MPa

T T T T 0.0
-600 -500 —-400 -300 —200
X, m/s

Figure 9.10. Hugoniot and isentropes through pressures of 10, 50, and 100 atm. on the
Hugoniot for a polytropic gas for which I'=1.4 (air).

Plots of pressure and particle velocity distributions at 10 and 50 ps are
shown in Fig. 9.11 for the case in which the high and low pressures are 1 and
100 atm, respectively.

Expansion to Zero Pressure. ‘A special case of the shock-tube problem
arises when the high-pressure gas expands into a void. In this case there is no
shock and pp =0. The leading characteristic of the expansion is x =cr ¢, and
the trailing characteristic is that for which p =0. From Eq. 9.130 we get
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Figure 9.11. Pressure and particle-velocity distributions at 10 and 50 ps for the case in
which the high and low pressures are 1 and 100 atm, respectively. The contact surface is
located at the positions marked CS.

¥p=——— (9.143)

for this case, a value called the escape velocity. Since

p )(F—l)/(ZI‘)

CL=C—(——_— . 9.144
i\ (9.144)

and z =c¢p +x we have

(9.145)
_( 2 T-1: )2”(“)
P=P \T+1 T+lcg ’
results that are valid in the range
S20 g (9.146)
'+l

9.3.1 Shock Reflection from an Unrestrained Boundary

In Sect. 3.7.2 we analyzed the interaction that occurs when a shock encounters
an unrestrained (stress free) boundary. We saw that the reflected disturbance
produces a reduction in pressure. Assuming that the incident shock is stable, this
reflected disturbance cannot propagate as a stable shock. It is, instead, a centered
simple wave. The X—¢ diagram of Fig. 9.12 illustrates this situation.

We shall assume that the material is unstressed, undeformed, and at rest
ahead of the incident shock:
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Figure 9.12. The X-t diagram for reflection of a shock as a centered simple wave. The
upper left part of the figure shows the state before the shock encounters the boundary,
and the lower left part of the figure shows the state after the reflection. The right part of
the figure shows the part of the Xt diagram near the interaction.

G =0, x =0, =0, 9.147)

We also assume that the state of the material behind the shock, the velocity of
the shock, and the mechanical properties of the material are known:

Uy =Up =G*, i=%% t,=t. (9.148)

These variables are related to one another by the jump conditions 2.113 and the
stress response function for the material.

Since the material boundary is unrestrained, the stress component #; must
vanish in region 3 behind the reflected wave. The stress response function can
then be used to determine the value G = G** in this region. To do this properly,
it is necessary to calculate the entropy jump across the shock before solving for
G** . This can be done, but we shall take advantage of the fact that the effect is
small and adopt a purely mechanical theory.

The solution in the simple wave region is obtained as in the previous section
(taking account of the reversed direction of propagation), and is

CL(G)=-XIt
G (9.149)
J'c=+j [CL(GHdG +x*.
G+
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Having determined the value of G in the region behind the reflected wave
from the stress response function, we now obtain the particle velocity in this
region as

G++
=+ | |CL(G)]|dG +x. (9.150)
G+

The leading characteristic of the reflected wave is
X=-CL(GNt (9.151)
and the trailing characteristic of this wave is
X=-CL(G"™r, (9.152)

completing the solution. Since we have neglected the entropy jump across the
incident shock in obtaining these results, the stress-response function used in
analyzing the simple wave is the same as the Hugoniot used in analyzing the
shock.

Example. Let us consider the foregoing problem for the case of a material
governed by the Hugoniot Us =Cg +Sx. Let us also adopt a purely mechanical
theory, i.e., neglect the entropy jump at the shock so that the stress response
function is the same as the p—G Hugoniot,
CsG
p= -—p—R——B—z— . (9.153)
1+SG)
The shock is propagating into material that is undeformed and at rest, and we
suppose it to have a given strength x*+ > 0. Then

ot

G+=_CB—:SF’ (9.154)
Substituting Eq. 9.153 into Eq. 9.93 we find
. (1-8G)”?
CL(G)=~-Cp W , (9.155)

where we have chosen the negative square root since the reflected wave is
propagating in the —X direction.

The receding characteristics ¢* = const. in the centered simple decompres-
sion wave are given by

a-56)"2

X =Cr(@t=-Cp oD 4,
- P Q+5Gy2

G*<G<G™, (9.156)
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so the leading and trailing characteristics are

1-S 1/2
X=- (————@——t 9.157)
(1+SG")*?
and
X=—Cgt, (9.158)

respectively, where this last result follows from the fact that G** =0 in the
mechanical theory.

The value of G at a point (X*,¢*) in the wave is obtained by solving
Eq. 9.156, which we can write in the form

Xt (1-8G)"2
Cat* (1+SG)¥2°

(9.159)

When this equation is squared it becomes cubic in G(X/Cstf) and can be
shown to have one real root given by

1 R? 1/3 R2 1/3
G=§ -1+[R2+R2(1+2—7ﬂ +[R2—R2[1+—2—7—)] . (9.160)

where R=-Cgp1*/X*. This equation gives G at any point (X", t*) of the
wave. Stress waveforms are obtained by substituting G into Eq. 9.153. To
complete the solution, we must find x(X* ¢*). Substitution of Eq. 9.155 into
Eq. 9.149 gives

G q_orn2
ixr=cp | UZSGY° 46 (9.161)
o A5G

and evaluation of the integral leads to the result

t2
Cs Co E{ l+SG 1+SG}

L2) [1=8G" 1-SG*
S 1+5G+ 1+SG*

giving x as a function of X and ¢, through the dependence (Eq. 9.160) of G upon
these variables. Some results of this analysis are plotted in Fig. 9.13.

(9.162)
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Figure 9.13. The centered simple decompression wave in copper (pr =8930kg/m3,
Cp=3940m/s, §=1.489 [77]) that results from shock reflection at an unrestrained
surface. The top part of the figure shows results for a shock of strength x+ =100m/s
and the bottom part shows similar results for a shock of strength x+=1000m/s. The
broken vertical lines on the waveforms show the location of the decompression shock
calculated as in Chap. 3.

9.3.2 Combined Centered Simple Waves and Shocks

In various of the foregoing sections of this book we have shown that stable
compression shocks propagate in cases where the stress relation is curved like
that shown in Fig. 9.14a, and simple waves propagate under similar conditions if
the stress relation is curved as in Fig. 9.14b. The key point is that, in the first
case (corresponding to a shock), the line connecting the initial and final states
lies above the curve, whereas it lies below the curve in the second case (corre-
sponding to a smooth wave). One could consider more complicated cases in
which the stress relation is inflected so that the line connecting initial and final
states lies partly above and partly below the curve. When this happens, the
waveform will be a shock combined with a centered simple wave, as indicated
in parts (c) and (d) of the figure. In the case in which the line lies above the first
portion of the curve, the solution consists of a shock corresponding to a transiltion
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from the initial state to the point at which a line through the initial point is
tangent to the stress relation, followed by a centered simple wave from this state
to the final state. In the other case, that depicted in part (d) of the figure, the
shock follows the simple wave, and provides a transition from the tangent point
of a line through the final state to the curve. As suggested in the X~ diagrams,
the shocks and centered waves are directly adjacent to one another; there is no
intervening region. The solution is obtained by fitting the shock and simple
wave together so that the stress and particle velocity are continuous. Since the
slope of the curve and the Rayleigh line are the same at the tangent point, the
edge of the simple wave adjacent to the shock will propagate at the same speed
as the shock.

One can see that, in a somewhat more extreme version of the case shown in
part (d) of the figure a line originating at the initial state might pass to the final
state without intersecting the curve, even though the latter was inflected. In this,
the transition from the initial to the final state takes the form of a stable shock.

Waveforms like those depicted in parts (c) and (d) of the figure are often ob-
served, but the explanation does not usually turn upon inflections in the equilib-
rium stress response curve, as do the cases discussed here. Rather, the behavior
is attributed to the occurrence of phase transformations, the onset of plastic
deformation, an increase of yield strength as plastic deformation accumulates, or
viscoelastic effects.

9.4 Comparison of Transitions Through Simple Waves
and Weak Shocks

As discussed in Chap. 3, the change in field variables associated with passage of
a simple wave is often calculated using the shock-jump conditions, i.e. ignoring
the shock instability that gives rise to the simple wave. Since the simple wave is
an isentropic process, whereas the shock is a dissipative process, some error
must be incurred in this method of analysis, and it is useful to estimate its
magnitude. For an elastic material, the entropy jump across the shock and the
error in calculating stress and temperature have been shown to be of third order
in [v]? or [G]>. When the error in estimating the particle velocity change is
evaluated by this method we find that

1IGLG)P
24 CL(G)

X —x (G* -G ) +.... (9163)

simple wave — [[x ]] shock +

Normally, it is in the case of a decompression process, i.e. one for which
G+ -G >0, that a simple wave is treated as a shock. When this is so, we see
from the foregoing equation that the change in particle velocity inferred from the
jump condition underestimates the true value by the term of third order in
G+ -G~ thatis given.
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Figure 9.14. Stress—deformation curves with associated waveforms and X-¢ diagrams.

Figure 9.15 shows an X-t diagram of a shock of constant strength propa-
gating into a region of uniform state. The characteristics drawn on the diagram
reflect the fact that the wavespeed in the material ahead of the shock is less than
the shockspeed and the wavespeed in the material behind the shock exceeds the
shockspeed. We know that the quantity

G
i+ I CL(G)dG = (X" (9.164)
0
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is constant along the receding characteristics in smooth fields. We do not expect
it to remain invariant as a characteristic passes through a shock, but we can
show that the jump is small for weak shocks. In particular, we have

[[x+J.CL(G)dG]] 214[%;(6(; ))] (G* =GV +.... (9.165)

so we see again that the difference between the result for a smooth wave and a
shock is of third order in shock strength.

In summary, we see that the change in stress, specific volume, temperature,
entropy, particle velocity, and the Riemann invariant at a shock and at a simple
wave of the same strength G+ -G~ differ by a quantity of third order in this
strength. Some numerical examples were given in Table 3.2.
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Figure 9.15. The X-¢ diagram of a shock propagating into a region of uniform state,
showing characteristic curves.

9.5 Formation and Attenuation of Shocks

Many important nonlinear wave-propagation phenomena involve flows in which
the entropy varies with position. Particular cases of interest involve unsteady
shocks—those that are changing strength as they propagate. Simple analytical
methods fail in these cases, but it is possible to develop some understanding of
the issue if attention is restricted to disturbances of only moderate strength. In
this case, the isentrope can be approximated by a function that is quadratic in A.
To this degree of approximation, the Hugoniot is the same as the isentrope, so
the entropy jump at the shock is neglected. This leaves us with an isentropic
flow. Two cases involving shocks of varying strength are considered in the
following subsections,

9.5.1 Shock Formation

Examination of the analysis of the simple compression wave discussed in
Sect. 9.2.2 shows that the characteristics are converging and must eventually
intersect. The extension of the diagram to later times that is given in Fig. 9.16a
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shows these intersections. The waveforms shown in Fig. 9.5b have been calcu-
lated for times before the characteristics intersect, but the same procedure can be
applied to calculation of waveforms for times within, and beyond, the region of
intersection. Several such waveforms have been plotted in Fig. 9.16b. One sees
that the solution is triple-valued for points beyond that at which the first inter-
section occurs (given by Eqs. 9.104 and 9.105). The low-density branch corre-
sponds to the state ahead of the wave, and the high-density branch corresponds
to the final state achieved behind the wave. At intermediate densities, the wave-
form bulges forward, giving rise to a multivalued solution.
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Figure 9.16. (a) The x—¢ diagram of Fig. 9.4, extended to later times at which the
characteristics intersect. Not shown are the characteristics in the region ahead of and
behind the wave. In the region beyond the point where the characteristics begin to inter-
sect, these characteristics overlay those shown, leading to a triple-valued solution. (b)
The waveforms of Fig. 9.5b, extended to later times at which the solution to the wave
equation becomes multivalued. The dotted lines designate the inadmissible triple-valued
section of the waveforms. The shocks shown have been embedded in the field in such a
way that the multivalued portion of the solution is eliminated and mass is conserved. The
vertical marks at the left indicate the boundary position for each waveform.

It is clear that this result is inadmissible on physical grounds: One cannot ac-
cept a solution that yields three different values for a field variable at the same
time and place. The resolution of this problem is to embed a shock into the
waveform so that the solution is single valued except for the usual indetermi-
nacy at the shock itself. The shock is inserted into the flow in such a way that
mass is conserved. The equation for mass conservation is

xs()
I p(x,t)dx=pr x3(1), (9.166)
xb (1)

where x (£) is the position of the boundary and xg(¢) is the position of the
shock. Once a characteristic analysis has been used to determine the density
field at several times, this equation is easily solved for shock position at each of
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these times. The shock amplitude is obtained by connecting the upper and lower
branches of the triple-valued solution. It is essential to this analysis that the
entropy jump at the shock is neglected, thus restricting the validity of the result
to shocks of only moderate strength.

9.5.2 Shock Attenuation

Shock attenuation (often called hydrodynamic attenuation) occurs when a shock
is overtaken by a smooth decompression wave. Consider the case in which an
unstressed projectile plate of thickness L and having velocity xp impacts an
unstressed halfspace that is at rest and made of the same normal material as the
projectile plate. The disturbance produced is illustrated in the X—¢ diagram of
Fig. 9.17.

15 7| == shocktrajectory
-- extension of initial shock trajectory

s

— simple wave boundaries

10 —

T 1A%
Xs(AY)

[ 1 [ { T
0 10 20 30 40 50

X, mm

Figure 9.17. An X—t diagram illustrating the overtaking of a shock by a centered simple
decompression wave. The diagram is drawn for the case in which a copper projectile
plate 1-mm thick and moving at 1000 m/s impacts a stationary copper target.

At impact, shock waves form at the interface and propagate forward into the
target and backward into the projectile plate. The state behind these shocks is
characterized by the parameters

xt=xp/2, pt=prUsx*, and A+ =x+/Us. (9.167)

When the receding shock encounters the unrestrained back surface of the
projectile plate, a centered simple decompression wave forms and propagates
forward. Since the soundspeed in the compressed material behind the advancing

shock exceeds the shock velocity, the smooth wave will eventually overtake the
shock. In this wave the advancing characteristics are given by

X =CA)(¢~t")-L, (9.168)

and the particle velocity is related to the compression by the equation
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At
x=xt- j C(A)dA' . (9.169)
A

Because the overtaking wave is one of decompression, we expect that the
interaction will cause a decrease in shock strength and velocity. Because of the
varying shock strength, the flow behind the shock will not be isentropic. This
complication is avoided in the weak-shock approximation that we shall adopt.
To determine the shock trajectory and the waveform, we need to calculate the
soundspeed from the second-order expression for the isentrope. If we base this
upon the Hugoniot Us = Cp +Sx, we obtain

PW(A)=pr CE A(1+2S54), (9.170)
so the Lagrangian soundspeed is given by
C(A)=Cr(1+254), 9.171)
and
A
I C(A)dA'=Cp(A* —A) [1+S(A+ -A) ] 9.172)
A

With this, Eq. 9.169 becomes
i=5t -Ca{ar-& +8[(ar - 4]}, (9.173)
The shock trajectory (following the point at which the interaction begins)

can be expressed parametrically by giving # and X as a functions of A in the form
t=1ts(A) and X = Xs(A). Substitution of these equations into Eq. 9.168 gives

Xs(8) =C(a)|ts (a)-1]-L. (9.174)

Through differentiation, we obtain

dXs(A) _ dC(A) dts (A)

s (A) -t |+C(A 9.175
A [s@-r]+c) ©.179)
Along the shock trajectory
dX =Us(A) dt, (9.176)
so Eq. 9.175 becomes the linear, first-order ordinary differential equation,
dts (A
D Lo @ =e@r, 9.177)

where we have written



236 Fundamentals of Shock Wave Propagation in Solids

_dcwy 1
= )T

(9.178)

Combining expansions of the various quantities appearing in Eq. 9.178 shows
that

2(, 1
o(8)== [1— -Z—SA) (9.179)

to within the accuracy of the analysis.
The solution of Eq. 9.177 is

+\2
(A =¢1" +[AT] [ts(A") =1 Jexp[-2S (A" - A) ], (9.180)
where
i CAH +L
ts(A )_—C(A+)—U§ (9.181)

is the time at which the leading characteristic of the decompression wave inter-
sects the shock. The associated value of X on the shock trajectory is given by
Eq. 9.174.

From the known speed of the initial shock and the soundspeed behind this
shock, the X~ diagram can be plotted up to the time at which the decompression
wave begins to interact with the shock. The diagram is completed when
Eqs. 9.180 and 9.174 are used to plot the trajectory of the attenuating shock.

The amplitude of the attenuating shock at a point on its trajectory can be
characterized by the value of A at the point. If one selects several values of A in
the range 0 < A < A*, the associated points on the trajectory can be plotted using
Eqs. 9.180 and 9.174. The value of A associated with each of these points can be
used to calculate the pressure (using Eq. 9.170) and the particle velocity (using
Eq. 9.173). The waveform behind the shock is given by the simple wave solu-
tion. Several pressure waveforms associated with the problem described in
Fig. 9.17 are plotted in Fig. 9.18.

9.6 Collision of Two Centered Simple Decompression Waves

Let us consider the waves and wave interactions that arise when two slabs of
like material collide. Suppose the collision involves an unstressed projectile of
thickness Lp moving at velocity xp colliding with a target of thickness
Lt > Lp that is unstressed and at rest. The waves produced are illustrated in the
X—t plot in Fig. 9.19.



9. Finite Amplitude Elastic Waves 237

20 - Xs(8%)
&
S 10
=,

1sps|  [30 Jas /6.0 75| /90| /105
0 | I I l >
0 10 20 30 m 50
X, mm

Figure 9.18. A sequence of pressure—distance waveforms illustrating shock attenuation.
The time corresponding to each waveform is given by the associated number on the
drawing. The distance at which the leading characteristic of the decompression wave
catches up to the shock and the attenuation process begins is marked Xs(A+) .

We shall analyze this event for a material for which the Hugoniot takes the
form
pr CZA

Us =Cg +S% orequivalently, pH(A)=-—"—"2B— |
s=Cs q y, p(4) (1-5A)?

(9.182)

We shall also need the isentrope through the shock-compressed state for which
p=p*" and A= A" Itis given by

A X
PM(A) =% (M) p* + I Ke(A) jar , (9.183)
A %e(A")
where
Xc(A) =exp[yr(A-A")] (9.184)
and
1 7R D) TRy ay o LHS—YR)A
Kc(A)—(l > AJ——————-———dA 5P (A)—pRCB——(l_SA)3 ,  (9.185)

with the second of these equations arising through introduction of Eq. 9.182 for
the Hugoniot.

A(?)

Ke(A")
O=p*+ ——=dA' 9.186
b .[y Xe(A") ( )

for a range of values of A® until a solution is found. For the example of Fig.
9.19, we obtain A®=-9.134x10~*. This expansion is attributable to the irre-
versible heating associated with the shock compression.
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Figure 9.19. Waves resulting from the collision of an impactor of thickness Lp against
a target of thickness Lt > Lp . The drawing is made for a uranium impactor of thickness
5 mm impacting a uranium target of thickness 10 mm at a velocity of 500 m/s. Uranium
parameters are pg =18950kg/m?, Cp =2487 m/s, and § =2.200. The impact produces
compression of about 8% and pressure p* =14.4 GPa. The scveral wavespeeds are
Us=3037m/s, CL(A*)=3611m/s, and C,(A?)=2479 m/s . Uranium was chosen for
this example because, with § =2.200, it is highly nonlinear so the effects of the interac-
tion are emphasized. The broken lines are typical characteristic curves. The dotted line
passing through the interaction region between points A and B separates the part of the
region BCD that is in tension from the part ABC that is in compression. The bold line
lying along the impact interface above point E’ indicates the separation of the interface
that occurs when the tensile region expands to meet the interface.

We shall need to determine the compression, A®), at the point on the de-
compression isentrope for which p =0. This is done by numerical evaluation of
the integral.

The Lagrangian soundspeed for material in states on this isentrope is given
by

m 1/2

CM(A) =
o
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and substitution of Eq. 9.183 into this equation yields the result

1/2
CM(A) =[ L[YRP(“)(A) +%e(4)] ] : (9.188)
PR

Shocks. Because of the symmetric impact, the shocks introduced into the
projectile and target produce the state characterized by x* =xp/2. The jump
conditions for the shock propagating into the target are

¢t = Us A
xo=Us (9.189)
pt=prUs X%,
or,
+ _PR .1v2 PR .. \2
pr =By = 22 i) 9.190)

Centered Simple Decompression Waves. Let us begin our analysis by
considering the right-traveling wave formed at the unrestrained back face of the
impactor plate when the shock encounters this surface. In accord with the
boundary condition, the material is unstressed in the region behind the wave, so
the compression, A, in this region, is the value on the isentrope when the
pressure is zero.

The characteristic lines along which the fields are constant in the right-
propagating wave are represented by the equation
X+LP=CL(A*)(t—£), (9.191)
Us
where we have identified A" as the characteristic coordinate. The quantity A"
has the range A* > A" > A@ . The leading and trailing characteristics of this
wave are obtained by substituting A* and A®, respectively, into Eq. 9.191.

Within the wave the fields satisfy the equation

A+
(A" + j CL(A)dA' = %+, (9.192)
A‘

and, using Eq. 9.191, we can determine x(X,t) and A(X,t) within the domain
occupied by the simple wave.

To determine the fields in the interaction region we need to know the
Riemann invariants on the ray characteristics for each of the decompression
waves.

For the right-propagating wave the Riemann invariant, Eq. 9.31,, is
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A
O (') =%+ j CL(A)dA' . (9.193)
A

Evaluating this quantity using Eq. 9.192 yields the value

a* A
OH(*)=x* - I CL(A)dA' + I CL(A)dA' (9.194)
Iy A
for the invariant within the wave. Since this value is preserved on the continua-

tion of the characteristic into and through the interaction region, we can equate
the right members of the foregoing two equations to obtain the result

A A A
x+ I CL(A)YdA =x* — I CL(ANYdA + I CL(A)dA', (9.195)
A®) A A

even though the characteristic curve is no longer represented by Eq. 9.191.

The left-traveling wave originating at the downstream face of the target plate

is analyzed in the same way, with the result that, in the region behind this wave,
A+
p=0, A=A® and %=x"+ J. " Cr(A)dA. (9.196)
A

The characteristic line on which the wave fields are constant is

X -Ly=-CL(A™) (t—ﬁl) (9.197)
Us
and we identify A™ (for A* > A™ > A®®) as the characteristic coordinate. The
leading and trailing characteristics are obtained by substituting A* and A,
respectively, into Eq. 9.197.

The particle velocity within the wave region, A" > A™ > A® | is given by
A+

¥(A™)=x* + I CL(A)dA' . (9.198)
At*

The Riemann invariant on the ray characteristics of the left-propagating wave is

A
O (™) = %~ I CL(A"YA' . (9.199)
AQ2)

Evaluating this function, using Eq. 9.198, yields the value
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A* A"
OH(™)=x" + I Cr(A)dA' ~ I CL(A)dA' . (9.200)
An A(z)

When this value is substituted into Eq. 9.199 we obtain the result

A A* A"
X - J. CL(AYdA =x* + J. CL(ANdA' - I CL(A)dA', (9.201)
A A A

which holds on the entire A*™* characteristic.

Interaction Region. Now let us consider the region in which the two decom-
pression waves interact. The characteristics in this region are continuations of
the characteristic rays defining each of the two intersecting waves. Since the
known values of the Riemann invariants are preserved on the extensions of these
characteristic curves into, and through, the interaction region, we can determine
the fields in this region as functions of the characteristic coordinates. This is
done by sequentially adding and subtracting Eqgs. 9.195 and 9.201 to obtain

ok

I A
F(AT, A"y = % +1 j CL(A)dA' - j CL(A"YdA’
2 An A(2)

*

At A
- I CL(A')dA’+J. CL(A")dA’
A A®

(9.202)

A 1 A A"
I CL(AYdA == I CL(ANdA' + I CL(A"YdA'
AD 2| Jyo A

Ar At
- j CL(A)dA' - J. CL(A)dA'|.
A* A**

The second of these equations gives the solution A(A", A™) in implicit form and
the first equation gives x(A", A™) explicitly, once A(A", A™) has been deter-
mined.

To express this solution in X, ¢ coordinates we must calculate the X, ¢ tra-
jectories of the characteristic curves. The region in which the two decompres-
sion waves interact is bounded by the cross characteristics that are extensions of
the leading and trailing rays of the centered simple decompression waves. The
first point of interaction of the decompression waves occurs at the point of
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intersection of the leading characteristics, which we designate point A. The X, ¢
coordinates of this point are

_7.T +
oo lr=Lef | CL(A )]

2 Us

(9.203)

A

_LT+LP- 1 +i
2 |Cuah) Us|

The characteristic through this point that crosses the right-propagating wave
is given by Eq. 9.115, which takes the form

Lp
s
X =-Lp+(Xa+Lp) 5

(9.204)
P
(-
Us

in the present case. Similarly, the characteristic through this point that crosses
the left-propagating wave is given by

X=Lr—(Lt-Xa) (9.205)

-
Us

Point B, corresponding to A" =0 and A™ = A", has the X, ¢ coordinates
LP 1/2
Xg = —LP+|:CL(A(2))(XA +Lp) (fA —?j—j}
5 (9.206)
Ly Xp+lp
_— + s
Us CL(A®)

B =
and Point C, corresponding to A" = A* and A™ =0, has the X, ¢ coordinates

L\]V2
Xc=Lt - |:CR L1-Xa) (tA —?]-S-):I
(9.207)
Lt Lt-Xe

lc=
¢ Us Cr

The X, ¢ coordinates of point D, corresponding to A"=0 and A™ =0, are
not yet known, but the particle velocity, deformation gradient, and stress can be
calculated from the known values of A" and A™ . One finds that ¥p = xp/2 and
that the compression and pressure at this point are negative, i.e., the material is
in tension. For the example described in Fig. 9.19 one finds Ap=-13.4% from
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which we calculate that the tension at this point is 9.13 GPa, and the wavespeed
for this deformation gradient is CL =1359 m/s .

To obtain the fields in the interaction region as functions of X and ¢, it is nec-
essary to calculate the X, ¢ trajectories of the characteristic curves A" = const.
and A™ =const. Thesc trajectorics are solutions of Eqs. 9.30 which, in the
present case, take the form

aX(A :A ) +CL (A A"‘*)M 0 on A" =const.
oA on"
(9.208)
XA oon, AM)M =0 on A" =const,
oA OA™
where
CL =Cr(1+2CA)V2, (9.209)

with A being the solution of Eq. 9.202.

Equations 9.208 can be solved for X (A", A™) and (A", A™) by a simple fi-
nite-difference procedure, yielding the X, ¢ trajectories of the characteristic
curves (within the interaction zone), and thereby the coordinates of point D and
the values of the field variables as functions of X and ¢. The analysis was con-
ducted on a 10 x 10 point grid and checked for convergence by refining the
analysis to a 19 x 19 grid. Since the intersection of each of the calculated char-
acteristic curves with the interaction region boundary is obtained from this
solution, and the wavespeed at each intersection point is also known, the char-
acteristics can be extended through the waves emanating from the interaction
region. The stress histories at the X coordinate through points A, C, and D are
shown on Fig. 9.20. The discontinuities of these histories fall at the points where
the lines of constant X pass from one wave region to another (see Fig. 9.19).
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Figure 9.20. Stress histories at the planes X = Xa, X = Xc, and X = Xp for the wave
interaction shown in Fig. 9.19.
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Transmitted Waves. The waves emanating from the interaction region are
simple waves because they are bounded by regions of the X—¢ plane in which
the field values are constants. The ray characteristics defining these waves are
straight-line extensions of the characteristics intersecting the boundaries of the
interaction zone. Because the values of A and x are constants on each of the
rays, they take the values on the curves BD and CD at the point of their inter-
section. These values have already been calculated as part of the solution in the
interaction region. At the time corresponding to the point E', the left-propagat-
ing wave begins to interact with the target plate. Since the stress in this wave is
tensile, and since the interface is free to separate, the reflection occurs as at an
unrestrained surface. A similar reflection occurs at the unrestrained back surface
of the target plate. These reflections are entirely similar and we shall concentrate
on the one that occurs at the back surface of the target plate.

Reflection at the Unrestrained Back Surface of the Target. The right-propa-
gating simple wave that emerges from the interaction region is reflected from
the unrestrained back surface of the target plate. This reflection process is ana-
lyzed in essentially the same way as the fields in the interaction region were
analyzed. The Riemann invariant on each of the ray characteristics of the right-
propagating simple wave emanating from the interaction region maintain the
value established previously. The boundary condition on the unrestrained sur-
face is one of zero pressure, so the compression on this surface is A= A®®, The
particle velocity is determined by substituting this compression into the
Riemann invariant for the right-propagating simple wave. With the compression
and particle velocity on this surface having been established, the Riemann in-
variant defining the wave reflected from the surface can be evaluated and the
fields in the reflection region determined as functions of the characteristic coor-
dinates. The X, r trajectories of these characteristics are then determined by
numerical solution of Eqs. 9.208 in the same way as for the interaction region.
The result is illustrated in Fig. 9.19. The velocity history of the unrestrained
surface that is obtained from this solution is plotted in Fig. 9.21.

500

0 T T T

2 4 6 8 10
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Figure 9.21. Back surface velocity history for the problem illustrated in Fig. 9.19.
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Spall Fracture. In the example problem discussed in this section, the wave
interaction has been shown to lead to states of tension in the interior of the target
plate. If the tension exceeds a critical value for the material, called the spall
strength, fracture will occur. This results in a layer of the material separating
from the target plate and the solution presented will cease to be valid. We shall
address this issue in Chap. 12.

9.7 Exercises

9.7.1. Referring to the discussion of waveforms propagated in materials de-
scribed by third-order elastic coefficients, what can be said regarding the case
3Cn +Cinn =07 For a commentary on this matter, see Thurston [97].

9.7.2. Solve the shock-reflection problem discussed in Sect. 9.3.1 for the case in
which the shock encounters a material of lower impedance than that in which
the incident wave is propagating. Let the two materials be governed by
Hugoniots of the form of Eq. 3.10.

9.7.3. The speed with which the leading edge of a compressed slab expands into
void space when the constraining pressure is suddenly released is called the
escape velocity. What is the escape velocity of an isentropically compressed
material for which the expansion isentrope is given by Eq. 9.153?

9.7.4. Derive Eq. 9.163. Hint: expand Eqs. 9.47 and 2.116, in powers of
G* -G~ and compare the results.

9.7.5. Derive Eq. 9.165.

9.7.6. Discuss the implications of the results of Fig. 9.13 for use of a shock as an
approximation to a centered simple wave.

9.7.7. Derive an expression for the X™ characteristics crossing a simple wave,

9.7.8. Use the definitions of the Lagrangian and Eulerian wavespeeds (the
relation of the wavespeed to the derivative of pressure with respect to a measure
of uniaxial deformation) to prove Eq. 9.18.

9.7.9. Show that the Riemann invariants given by Eqgs. 9.31 are the same as
those given by 9.38.

9.7.10. Derive Eq. 9.20.



CHAPTER 10

Elastic—Plastic
and Elastic—Viscoplastic Waves

10.1 Weak Elastic—Plastic Waves

We consider a homogeneous and isotropic elastic—plastic plate subject to a
small uniaxial deformation. Because of the assumption that the strain is small,
no distinction need be made between Lagrangian and Eulerian coordinates and,
since the only coordinate appearing in the following analysis is X7, we shall use
the abbreviation X; =X .

The requirements for balance of mass and momentum at a shock are repre-
sented by the jump equations 2.1131 5, which we write in the form

[-En]us=[%], prUs[#]=]-ta]. 10.1)

In writing the first of these equations we have omitted the small term involving
E121 The principles of balance of energy and production of entropy must also be
satisfied at a shock, but we are restricting attention to weak shocks so thermal
variables can be neglected, leaving us with a purely mechanical theory.

When applied to a shock propagating into material in a known state
S~ ={t5, £, X"}, the two jump equations involve the unknown quantities
S*t={t}, Nﬁ, x+} and Us. One of the quantities comprising S+ is normally
specified as a measure of the stimulus producing the shock.” The relevant mate-
rial properties are characterized by Hugoniot curves appropriate to the theory of
ideal elastic—plastic response. For the analysis in this chapter it is adequate to
restrict attention to the f; — Ey , In -En , and f;; —x Hugoniots. Neglect of
thermal effects means that the response of a material to shock-induced deforma-
tion is the same as its response to the same deformation effected quasi-statically,
ie, the f—En and fn - En Hugoniots are the same as the static stress—
strain curves of Fig 7.3.

* In the case of ideal elastic—plastic materials in which the elastic response is linear, the
shock velocity is excluded from a role in describing the material state because relations
between the shock velocity and the other variables are not invertible.
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Bilinear Hugoniots such as are shown in Fig. 7.4 correspond to shocks that
are unstable (for both compression and decompression) when their amplitude is
such as to include the slope discontinuity in the path. These shocks separate into
distinct marginally stable elastic and plastic shocks. All responses to instantane-
ous load application or release take the form of propagating shocks.

Several quantitative examples are presented in the remaining sections of this
chapter. To permit comparison of cases, they are all calculated for a steel. Spe-
cifically, this material is characterized by the elastic moduli Az =123.1 GPa
and pr =79.29 GPa (corresponding to a Young’s modulus of 30x10¢ psi and a
shear modutus of 11.5X106 psi), a density pr = 7870 kg/m3, and a yield stress
Y =1.00 GPa (145,000 psi). These parameters lead to the elastic wavespeeds
Co =5983m/s and Cp =4728 m/s. These material constants were used in all
example calculations where a result is said to be for “steel”.

10.1.1 Compression Shocks

Let us begin by analysis of the waves produced by sudden application of a
uniform compressive load to the face X =0 of a plate.

Examination of the Hugoniot shown in Fig, 10.1a shows that two amplitude
ranges must be considered. Waves propagating into undeformed material and
having compressive amplitude less than the Hugoniot elastic limit involve only
clastic response. A shock of greater amplitude is unstable, causing it to separate
into two shocks. The leading shock, called the elastic precursor, is of amplitude
f =— ™ and propagates at the longitudinal elastic wavespeed

AR +2 1/2
co=(—-13—5;*—‘3‘—) : (10.2)

The second shock, called the plastic shock or plastic wave, takes the material to
the state imposed on the boundary and propagates at the bulk wavespeed

_ 7\'R +(2/3)HR )1/2 __(BR )1/2
Cp —(—pR =\5z) - (10.3)
As is obvious from these equations, Co >Cg. This waveform is shown in
Fig. 10.1b.

The elastic and plastic shocks, and their interactions with each other, mate-
rial interfaces, etc., can be analyzed using the jump equations 10.1. The shock
velocities to be used in these equations are Us =+ Co for the elastic shock, and
Us=+Cs for the plastic shock. Applying these equations to shocks in the
elastic range that are propagating into undeformed material at rest gives

m=prCiEn, 0<-Ens<Ef™

(10.4)
x=—tnlpr Co), O0<~ty B
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Figure 10.1. (a) Uniaxial-strain Hugoniot. The slope of the elastic segment of the
Hugoniot is pr CZ and that of the plastic segment is pr C3. (b) elastic—plastic
waveform of stress amplitude tl(f) propagating into undeformed material.

Since the amplitude of the elastic precursor is —¢}iE- | the particle velocity and
strain of the material behind it are given by

PO PRICo B = ¢, E]};EL = xHEL (10.5)
FO__ _L,‘CHEL -1 fHEL = _ F7HEL (10.6)
1 Co C02 1 oo

and the transverse stress component is

_363-¢¢

() _ _ fHEL _ 0 /HEL
Ly =—by" = . 10.7)
22 2C02 1 (

22

The yield stress measures Efi", x HEL L and £FL can be expressed in

other forms, as listed in Table 10.1.

Suppose the state behind the plastic wave is characterized by the constant
field values $@ =@, EP, ¥} | Equations 10.1, applied to the plastic wave,
yield the two equations

Cs (_51(12) _ E'I}IIEL) = x(2) — x HEL

(10.8)
pr Cp (¥ — x MLy = (D) _ pHEL

’

relating the variables defining the state §@ . If x(2) is given as a boundary
condition it is convenient to write these equations in the form

Fo-_ L e (Eo_-C_B_) L
Cs Co , for #@>ywEL (10.9)
tP =—pC x@ —p(Co - Cp) XML
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Table 10.1. Expressions for the Hugoniot elastic limit

Hre B3 Em x
A ’ ;\‘ Ne 42 172
o ARTZER Y L [—R ’:R] Y
2uR 2pg 2uR 4pr pg
1 4 1/2
B,u B_R+3 Y Br _l Y ) Y BR+3’J'R Y
2ur 3 2pur 3 HR 4prp}
co e 2C3Y 3CE-C¢ 2y 2C, ¥
%%~B 3(C2-C8) 3(CI-CH) 3pR(C3-C8)  3pr(CZ-CB)
3C3-C2 1 I owm
FHEL HEL 0 ¢HEL |2
11 1 _2C02 11 PR C()2 1t pRCO 11
L 207 . i 2 m_ 2Cety
z 3CE-C¢ 2 2 Pr(3CE-CH *  pr(3CE-CD)

Elliﬂ PR C02E1}1m p7R(3Cl§‘C02)E1}1E ElTEL COEHEL
= prCok HEL pr (3CE-CP) P x HEL 5 HEL
2Cy Co

Similarly, if & is given, we have

~ 1 cE-cg
(2) _ (2 0 B | 4HEL
En)" Cz{tll)+(——C2 jtu }

R~B 0

)27(2) - 1 -‘t](lz) _ Co—-Cn tl}i[EL
Pr CB Co

We can use these equations to plot the fi;—x Hugoniot corresponding to the
f1—FEn Hugoniot of Fig. 7.4. In the elastic range, Eq. 10.4; gives

for P24 (10.10)

—t;=prCox, for x<x" or -, <", (10.11)
and in the plastic range Eq. 10.9, can be written

Co-Chr
)

—t;, =Pr Cch+( )tﬂEL, for x> X" or —f;, 2 4F.  (10.12)
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Figure 10.2. Stress—particle-velocity Hugoniot curves corresponding to the elastic—
plastic stress relations of Fig. 7.4. Part (a) of the figure is drawn for the case
~tP < 2¢}EL and part (b) of the figure is drawn for —#{? > 2 tHEL .

The result is shown as the compression branch on each of the diagrams in
Fig. 10.2.

Finally, using Eq. 7.53, we can write the transverse stress components in ei-
ther of the equivalent forms

2_2
(2 =@ +_3(C_20.C%)_ £HEL = tl(lz) +Y, (10.13)
0

or

@, Pr (Co +3C8)(Co - C) wHEL

f§§)=—PRCBX Yo
0

(10.14)

10.1.2 Impact of Thick Plates

Waves generated by planar impact of one elastic—plastic plate on another are
analyzed as discussed in Chap. 3. The state at the impact interface is defined by
the intersection of the #;;—x Hugoniots for the plate materials. These Hugoniot
curves are to be centered at the appropriate initial conditions and oriented for
wave propagation away from the interface, as shown in Fig. 10.3a. The X-¢
diagram for the shocks produced by a typical impact is given in Fig. 10.3b,
which shows the two shocks produced in each plate due to the instability of the
shocks initially produced by the impact. Finally, a plot of the resulting
waveform is given in Fig. 10.4.
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Figure 10.3. (a) Stress—particle-velocity Hugoniots for a 350 m/s impact of an
aluminum alloy 6061-T6 plate against a steel plate and (b) The X—¢ diagram for the
shocks produced by this impact.
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Figure 10.4. The waveform produced by impact of an aluminum alloy 6061-T6 plate on
a steel plate at 350 m/s. the plot is made for the time £=2ps.

10.1.3 Decompression Shocks

Let us now consider the case in which the applied stress producing the wave-
form of Fig. 10.1b is suddenly removed from the boundary of the slab after a
time interval ¢*. In obtaining a solution to this problem, three amplitude ranges
must be considered: i) —¢P <sHEL i) HEL « — tB <DL i) 2 pHEL < (D)
The first range involves only linear elastic response. The propagating
disturbance takes the form of a non-attenuating flat-topped pulse advancing at
the velocity Co. We shall not discuss this case further. In the second range
decompression to 1) =0 occurs by means of a single, elastic decompression
shock. In the third range the decompression shock is unstable, separating into

elastic and plastic shocks. Discontinuous loading and unloading problems can
all be solved using the shock jump equations.

Elastic Decompression. We begin our consideration of this low-stress case of
the attenuation problem by determining the state behind a decompression shock
propagating into compressed material in the state discussed in Sect. 10.1.1 The
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case is defined by the requirement that the peak stress in the compressed state
(called state 2) is restricted to the range - <— t(2)< 2¢tHEL . Examination of

the Hugoniot curves for this case, as given in Fig. 10.5a,b, shows that decom-
pression to zero longitudinal stress can be accomplished by a single elastic
shock taking the material to a state 4’ that is a function of state 2. Application of
the jump equations 10.1 to this shock gives the particle velocity, strain and
transverse stress in the decompressed state (state 4') as

: Co-Chr
@2 0 =C8 [ 1), e |
pr Co CB
=4 _ 2
E;’ = CZCB [t( >+tﬁEL] (10.15)
@ 3G Cz) [c ]
22 .
2pr Gy

Examination of the X—¢ diagram of Fig. 10.5c indicates that the elastic de-
compression wave will overtake the plastic part of the compression wave at

Co " CoCr
t, =——"" 10.16
Co—Csn ' * ™7 Co-Cs (10.16)

ta=

where ¢* is the duration of load application. The waveform produced in this
case is shown in the first column of Fig. 10.7.
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Figure 10.5. Hugoniot curves and an X—¢ diagram for the case in which the peak stress
satisfies tHEL < —£2) <2¢HEL n this and all following X—¢ diagrams the solid lines
designate plastic waves and the broken lines designate elastic waves.

Elastic—Plastic Decompression. Stress—strain paths for unloading from a state
fP-E® have been given in Fig. 7.4. The associated f1—% Hugoniot of
Eqs 10 11 and 10.12 is plotted in Fig. 10.2b, along with an unloading Hugoniot
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for right-propagating waves, which can be found using the jump equations as
above, or by graphical means. The residual strain, particle velocity, and trans-
verse component of stress (corresponding to state 4 on the figures) are given by

E1(14) =-Ejj=- ‘2Y
3Br
#@=grz C0=Co m 10.17)
pr Co Co

Several other expressions for these quantities are

E’R — COZ—C}% tHEL - COZ'C}% )-CHEL = C()z“'cé EHEL
11 2 2 11 2 2 11
pr Cy Cg C, Cg Cy
(10.18)

. G, -C Cy-Cg . C ~
¥R = 0 B tlli[EL - 0 B xHEL = 20 (CO —CB) EI}IIEL'
Pr G, Cy Gy Cy

Note that, in contrast to the previous case of elastic decompression in which the
decompressed state varied with varying peak stress, the state 4 obtained upon
release of material compressed into the plastic region can be completely de-
scribed in terms of material properties and is independent of peak stress.

Let us suppose that a stress —#(2 > 2+}EL is applied at the boundary at the
time =0 and removed at the time r=¢*. The f1—x Hugoniot and the X—¢
diagram for this problem are given in Fig. 10.6.
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Figure 10.6. Stress—particle-velocity Hugoniot and Xt diagram for a compression-
decompression process. Hugoniot states and the regions of X—# space in which they
prevail are matched by the numbers.
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Two examples of the waveform as it evolves in time are shown in
Figs. 10.7b,c. It is apparent from the X—f diagram that the first step of the un-
loading wave will overtake the second step of the loading wave at the time and
place given by Egs. 10.16.
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Figure 10.7. Decompression wave overtaking a compression wave. The waves are of
amplitude (a) 51" < ~t{2 < 2¢1EL (2.5 GPa), (b) 2¢1FL <« —1® < 3¢FEL (—4.5
GPa), and (c) —tﬁ) > 3tHEL( 10 GPa) propagating in steel. Waveforms in the top row
correspond to a time of ¢"=1ys and waveforms in the lower row are plotted for
t=3 ps.

The field values in region 1 of Fig. 10.6b are given by Eqs. 10.5 and 10.6,
and in region 2, we have fields given by Eqs. 10.9 or 10.10. In region 3 the
fields are determined by application of Egs. 10.1 to a right-propagating elastic
wave (Us =+ Cp) taking material from the state t(z)—x(z) to a state in which
the stress is £{?’ +2#HE _ The result is

1D =P + 24/

O =@ gpre oL@ [COHCRY | (10 1)
pr Cp Co "

~3) ~ Cl+C3
E1(13) = E1(12)+2Ex}11EL -1 2 |it1(12) "'[O—Bj tll-llEL:|’
pr C

2
B CO
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In writing these results, we have expressed the strength of the loading distur-
bance in terms of its stress amplitude £, and have expressed all of the meas-
ures of the HEL in terms of £ . One could, of course, express the same results
in terms of other measures of the applied load and material yield point.

It is important to note that the yield condition, which is always given by
Eq. 7.39, changes from the expression f11 —f; =—Y used for the compression
processes to the expression f11-f» =+Y for the decompression processes.
Using this yield condition and the previous results, we obtain the transverse
stress in state 3 as

C‘O2 +3C}§ tHEL

3H_ .2 3 2
t2(2)=t2(2)+2tszEL=t1(1)"Y=t1(1)+ 7—
2C;

(10.20)

10.1.4 Reflection from an Immovable Boundary

Analysis of the reflection of an elastic—plastic compression wave from an im-
movable boundary proceeds in the same way as calculation of other shock
interactions. It is only necessary to think of the boundary as an interface between
the elastic—plastic material and an incompressible body. The #;~x Hugoniot of
the latter material is a vertical line through x=0: no amount of stress can
impart a velocity to this material.

For times prior to the encounter of the elastic precursor with the boundary at
X = X1, the solution is as given in Sect. 10.1.1 The precursor reflects from the
boundary at the time ¢ = X1/Co . The new state behind the reflected wave (call
it state 3) lies at the intersection of the Hugoniot for a left-propagating shock
centered on state 1 and the line x =0 in the #;—-x plane. Since the transition
from state 1 (a forward-yield state) to state 3 is compressive, the reflected shock
is a plastic transition. Application of the jump equations to this shock gives

®._Co+C
hW=-——75"8h

Co
(10.21)
7o G+l
1l PR
PR CO CB

since x3 =0

The next wave interaction is the encounter of this reflected plastic shock
with the incident plastic shock. The state produced by this interaction (let us call
it state 4) involves further compression so both the transition from state 2 to
state 4 and the transition from state 3 to state 4 are plastic shocks, as shown in
Fig. 10.8. Application of the jump equations to each of these shocks gives
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PRCB[ n i ]

go_ 1 | @, G-CG-C m
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The final interaction that we shall consider is that of the main plastic com-
pression shock with the boundary. The result of this reflection is a further com-
pression, with formation of a left-propagating shock transition from state 4 to a
new state (which we shall call state 5). Because this transition is a further com-
pression, it is a plastic shock. The analysis of state 5 is routine and gives the
results:

) =9
tD =262 4 Mtf,ﬂ (10.23)
Co
~ Co ~C
FQ=—1 | 2@ +M fEEL |
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Figure 10.8. (a) The x—t diagram, (b) 11— Hugoniot plot, and (¢) f—Eyn Hugoniot
plot for shock reflection from an immovable boundary. The drawings are made for an
incident wave of #; =-6.25 GPa amplitude propagating in steel, and the propagation
distance to the reflecting boundary is 10 mm. The numbers marked along the ordinate in
(a) are times in ps for which waveforms are plotted in Fig. 10.9.
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A sequence of waveforms is plotted for a specific example problem in
Fig. 10.9. Further interactions can be expected when the left-propagating waves
reach the boundary at X =0 but we have not specified the nature of this
boundary and shall not address the issue here.

In Chap. 8 we found that an elastic wave described by the linear theory is
reflected from an immovable boundary with doubled amplitude. In Chap. 9 we
found that, when the nonlinear theory is used, the amplitude of a reflected elastic
wave is more than twice that of the incident wave (for normal materials). In the
present case the elastic precursor is reflected as a plastic shock rather than as an
elastic shock and its amplitude, — tl(f), is less than twice that of the incident
precursor (for steel it is 1.8 times that of the precursor). The longitudinal com-
pressive stress at the boundary after the reflection process is completed, — tl(f ),
is less than twice the amplitude, — tl(lz) , of the incident wave. In the case of steel,
the error in assuming the stress doubles upon reflection is about 10 % when the
amplitude of the incident wave is near the Hugoniot elastic limit, and decreases
with increasing strength of the wave.

~In 2 —t 2
—~=Cy Cypt>
L0 ps || 175 ps :13: .
%] ! "
XL X i X, X
A A
=i ~I ]
Cs
Ce :IL Cy
Cs n
1.90 ps 230 us
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Figure 10.9. Waveforms for the example of Fig. 10.8. The heavy vertical line designates
the immovable boundary.

10.1.5 Reflection From an Unrestrained Boundary

Analysis of the reflection of an elastic-plastic compression wave from an unre-
strained (also called “stress-free”) boundary proceeds in the same way as calcu-
lation of other shock interactions. It is only necessary to think of the boundary as
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an interface between the elastic—plastic material and a solid that does not resist
compression. The #1-x Hugoniot of the latter material is a horizontal line
through £, =0 : no stress can be produced in this material.

For times prior to the encounter of the elastic precursor with the boundary at
X =Xy, the solution is as given in Sect. 10.1.1 In contrast to the preceding
analysis of reflection from an immovable boundary, it is not possible to present
a solution for reflection from an unrestrained boundary that is valid for an inci-
dent elastic—plastic wave of any strength. The wave interactions arising during
the reflection process change qualitatively as the strength of the incident wave
under consideration passes from one range of similar responses to another. We
shall discuss the response in four stress ranges. The range of low stresses,
n £ t,},LEL , is that of elastic response discussed in Chap. 8. The response in two
intermediate ranges, which we shall call the low— and high—intermediate stress
ranges is also discussed. Finally, we shall comment upon response in the range
1 > 241EL of high stress.

10.1.5.1 Reflection in the Low—intermediate Stress Range

The low-intermediate stress range is defined by the inequalities

Co +3C
HEL D g —C%'TC_S B (10.24)
As the analysis proceeds we shall sece how the upper limit to the range arises.
The X—t diagram for this case is given in Fig. 10.10 and the f;-% and f1-En
Hugoniot diagrams describing the interactions are given in Fig. 10.11. Although
the complete diagrams are given in these figures, it is important to realize that
they must be drawn in steps as the interactions are analyzed.

The first wave interaction occurs when the precursor reflects from the
boundary at the time X1 /Co . The state behind the reflected wave (call it state
3) lies at the intersection of the Hugoniot for a left-propagating shock centered
on state 1 and the line #; =0 in the /1 —x plane. Since the transition from state
1 (a forward-vield state) to state 3 is a decompression, the reflected shock is an
elastic transition to zero longitudinal stress. Application of the jump equations to
this case gives

1D =0, x® =2%HEL 51(13) =0, (10.25)

The next wave interaction is the encounter of this reflected elastic shock with
the incident plastic shock. This interaction produces a state that we have
designated state 4. This state is represented on the diagrams of Fig. 10.11. It is
defined by the intersection point of the Hugoniot for left-propagating waves
centered on state 2 and right-propagating waves centered on state 3. As
discussed previously, state 4 lies at this intersection because this is the only state
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satisfying the jump equations, i.e., lying on the Hugoniots in question, and
leading to the required continuity of the fields #1 and x in the region. It is
important to recognize, however, that there is no requirement that En, En,or
2, be continuous in this region. In the present case these latter fields are not
continuous, exhibiting a non-propagating discontinuity at the material surface
where the interaction occurs. This discontinuity is called a contact discontinuity
and the surface a contact surface or contact interface. Let us analyze the
interaction by application of the jump equations 10.1. Application of these
equations to the right-propagating wave centered on state 3 gives

c( E1(4+)+E(3)) @ —x®
(10.26)
PaCo (569~ #9)= 49 41,

and a similar application to the left-propagating wave centered on state 2 gives
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Figure 10.10. The Xt diagram for reflection of a shock of strength in the low—interme-
diate stress range from an unrestrained boundary.
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Figure 10.11. Hugoniot diagrams illustrating the states produced during the reflection of
a shock of strength in the low—intermediate stress range from an unrestrained boundary.
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-G (- E® + EQ) = 1@ — 5@
(10.27)
—PRC()(J'C(") - 3&(2)) = —tl(?) +t1(12) .

In writing these equations we have allowed for the possibility that Ey; is dis-
continuous and have recognized from the Hugoniots that the two shocks pro-
duced by the interaction will both propagate at the elastic wavespeed (but in
opposite directions).

The values of the field variables in state 2 are known, being given by Eqgs.
10.10, and the values in state 3 are given by Eqgs. 10.25. When these values are
substituted into Eqs. 10.26 and 10.27 and the latter solved we obtain the result

Co+Cn
e il i
2Cs
1
¥ = (= (Co +CB)EP + (3Cp — Co) L
szcocB( i +( )

(10.28)
E(4+) - Co +CB

t(z) +tHEL
11 ZPRCQZCB( 11 11

2C2+CoCy -C

E@) = (£ 4 ¢HEL .
il 2pR Cozcé ' 11

It is important to note that state 4 lies below the clastic limit on the Hugoniot
through state 3. A different and more complicated solution arises when yielding
occurs in the transition from state 3 to state 4, and it is the need to separate these
two cases that establishes the upper limit on the low-intermediate stress range.

Region 5 arises as a result of reflection of the right-propagating transition
from region 3 to region 4* from the unrestrained surface. Because £}’ =0 on
this surface, examination of the Hugoniot curves of Fig. 10.11, shows that
E® =0 as well, and that the transition propagates at the elastic wavespeed.
Accordingly, application of the jump equations to this shock gives
-;( (Co +Co)P +(Co - Cr) ). (10.29)
pPrCo Cn
When this decompression encounters the contact surface formed at X', another
interaction producing a region, which we have designated region 6, occurs.
Analysis of this region gives

xG) =

(9=0, ¥©=x E®-9

2 2 10.30
E©) = Co — CB (t(z) _ tHEL) ( )
11 2,2 \'11 11 >

PrCyCy
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and we see that region 67 is really just a continuation of region 5; no discontinu-
ity is formed. Since there are no waves in the domain that could produce further
interactions, analysis of the reflection is now complete. Plots of the waveform at
various times are given in Fig. 10.12.
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Figure 10.12. Waveforms for the problem illustrated in Fig. 10.10.

10.1.5.2 Reflection in the High—intermediate Stress Range

The high—intermediate stress range is defined by the inequalities

Co+3CB mpL __,(2) _»,HEL
——t <-hy) L2677 10.31
Coicy 1 <24 (10.31)

This is a very narrow range in which the Hugoniot segment from state 3 to state
4 of the previous example crosses a yield point, thus causing a splitting of the
associated transition into an elastic and a plastic shock. The upper limit of the
range is set by the condition that the decompression from state 9 (see Fig. 10.13)
to a state of zero stress does not involve reverse yielding,

We shall illustrate this case by an X-f diagram, the usual Hugoniot dia-
grams, and some illustrations of the waveform. The essential difference between
this case and that of the low—intermediate stress range is the wave splitting
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mentioned and the creation of a second contact surface associated with an inter-
action of the plastic part of the split wave.
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Figure 10.13. The X—¢ diagram for reflection of a compression wave in the high—
intermediate stress range from an unrestrained surface of a 10-mm thick slab. The region
in the ellipse is shown enlarged at the right. This figure is scaled for steel.
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Figure 10.14. Hugoniot diagrams for reflection from an unrestrained boundary of a
stress pulse having amplitude in the high—intermediate stress range.

10.1.5.3 Reflection of Waves Having High Stress Amplitude

When stress waves of ever greater amplitude are considered, the number of
interactions to be analyzed grows. Often, however, one does not need to obtain a
detailed waveform or history of the motion of the surface, but requires only a
determination of the final velocity achieved. This can be done quite easily; the
free-surface velocity approaches, through a complicated process, the same value
that would be realized if decompression simply took place on the Hugoniot for
left-propagating waves centered on state 2. The result is easily seen to be
Co—Cs

i) =252 - L ZCB pum (10.32)
Cs
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Figure 10.15 Simplified #11-x Hugoniot for reflection of a compression wave of high
amplitude.

10.1.6 Interaction with a Material Interface

We have been considering reflection of a compressive elastic—plastic wave from
a boundary that is either completely fixed or completely free to move. Other
cases of interest arisc when the wave reflects from an interface with another
material. In these cases both reflected and transmitted waves are produced by
the interaction. Analysis of these problems proceeds much as has already been
discussed. The interfacial state lies at the intersection of the appropriate ;;—x
Hugoniots for the materials in question. Because numerous parameters are
involved, it is not practical to classify and analyze all possible cases. We shall
consider the special case in which a wave passing through an elastic—plastic
slab encounters an interface with an X-cut slab of crystalline quartz
(Pr =2649kg/m’® and Co =5749m/s for the quartz). This problem is of practi-
cal importance because the quartz crystal, which is piezoelectric, can be config-
ured in such a way that it produces an electrical signal that is a measure of the
stress at the interface. The X—¢ diagram for this problem is given in Fig. 10.16
and the Hugoniot diagrams are given in Fig. 10.17. Examination of the latter
figure shows that the quartz response is essentially linear in the stress range
plotted, and that the shock impedance of the quartz is much less than that of the
steel. For this reason the reflected wave is one of decompression, i.c., rather like
that for reflection from an unrestrained boundary. The stress transmitted into the
quartz is less than that in the incident wave in the steel. When the quartz plate is
configured as a stress gauge it measures the stress at the interface, and some
calculation is required to infer the strength of the incident wave.

10.1.7 Impact of Plates of Finite Thickness

When the impacting plates just considered are of finite thickness, further wave
interactions occur. In many cases, these interactions result in production of
tensile stress in the interior of the thicker plate. The analysis of elastic—plastic
waves generated by the impact of plates of finite thickness provides the oppor-
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Figure 10.16. The X-t diagram for transmitted and reflected waves produced when an
elastic—plastic disturbance encounters an interface with an elastic material. The drawing

at the right is an enlarged view of the region in the circle at the left. The scale is for steel
and X-cut quartz.
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Figure 10.17. Hugoniot curves showing the encounter of an elastic—plastic wave with
an interface with a lower impedance elastic material. The broken line in the stress—
particle-velocity diagram is the quartz Hugoniot; all of the other lines are for the steel.

tunity to discuss tensile waves and is of considerable practical importance be-
cause of the possibility that fracture will occur.

In this section we present the calculation of a specific example that illustrates
the phenomena that can be expected to occur. We consider the impact of a 5-mm
thick steel plate on a 10-mm thick plate of the same material at a velocity of 230
my/s. The calculation proceeds as outlined in the preceding sections, so it will be
sufficient to summarize the results. The X—t, #1—x, and #;—Fn diagrams for
the problem are presented in Figs. 10.19, 10.20, and 10.21, respectively.
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Figure 10.18. The interfacial stress history resulting from the interaction. This corre-
sponds to the record that would be obtained if the quartz plate were configured as a stress
gauge. Numbers on the curve correspond to states on the Hugoniot diagrams.
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Figure 10.19. Space--time diagram showing the wave interactions that result from the
impact of a 5-mm thick steel plate on a 10-mm thick plate at the velocity 230 m/s. The
interactions that occur at the left and right stress-free boundaries are reflected images of
each other, so only one need be analyzed. Calculation of the interaction at the boundary is

terminated when the stress decreases to a value that is zero, to within the accuracy of the
calculation.
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4

Figure 10.20. Stress—particle-velocity diagram of the wave interactions occurring in the
problem described above. Numbers on the curves correspond to X—¢ regions designated
in Fig. 10.19.
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Figure 10.21. Stress—strain diagram of the wave interactions occurring in the problem
described above. Numbers on the curves correspond to X—¢ regions designated in Fig.
10.19.

The particular point of this problem is that the material of the target plate
goes into tension as a result of the interaction of the decompression waves
arising when the compression waves are reflected from the unrestrained bounda-
ries of the two plates. As shown in Fig. 10.22, the tensile stress develops incre-
mentally as the interaction evolves. This is in contrast to the case discussed in
Chap. 3, where the tension was produced instantancously by collision of
decompression shocks and the case discussed in Chap. 9, in which the transition
from compression to tension proceeded smoothly in the interaction zone of two
smooth decompression waves. The analysis given here is based upon the
assumption that the maximum tension that arises in the target plate is insuffi-
cient to cause fracture, but fracture often results from wave interactions such as
those discussed, and this possibility is addressed in Chap. 12.
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Figure 10.22. Stress history at the plane X=10.44 mm (the plane at which the maxi-
mum tensile stress first appears. Numbers on the curves correspond to X—¢ regions
designated in Fig. 10.19.

10.1.8 Pulse Attenuation

Attenuation of an elastic—plastic pulse such as we have discussed in Sect. 10.3
occurs in discrete steps when elastic decompression shocks overtake plastic
shocks. Solution of the overtake problem is complicated by the need for sequen-
tial analysis of numerous shock interactions, with analysis of a given case being
concluded only when it has been carried to a time after which no further interac-
tions are possible. Elastic—plastic pulses do not attenuate to zero strength, but
only to the amplitude of the elastic precursor.

The details of the shock interactions change as £ occupies various ranges
that depend on - and the wavespeeds. The lowest-stress range,
0 <1 <t® is one of elastic response. Since no attenuation occurs in this
range we shall ignore it. In the next-higher range, 17" <> <21/, com-
plete decompression is achieved by a single elastic shock and a simple, direct
analysis applies throughout the range. When the peak compressive stress ex-
ceeds 2 AiEL the decompression process involves both elastic and plastic transi-
tions and presents a sequence of cases distinguished by qualitative changes in
the shock interactions that occur. The cases are defined in terms of a range of the
peak stress, — tl(,z) , throughout which the interactions are qualitatively the same
so that a single analytical solution is valid. Pulses in the stress range

C02+g Cr tl}:EL - tl(lz) < Co+5Cr tl};EL

0 Co+Cs

(—4.91 to —3.55 GPa in steel) are analyzed in the following paragraphs. Other
cases are discussed in [30]. The analysis is accompanied by quantitative calcula-
tion of field values, waveforms, etc. for a pulse of 1us duration introduced into
the steel described earlier. The X—¢ diagram for this problem is given in
Fig. 10.23, and the solution in regions 1-4 is as given in Sects. 10.2 and 10.3.

(10.33)
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Figure 10.23. Space-time diagram for pulse propagation in stress range D. The scale is
for steel, the solid lines designate plastic waves and the broken lines designate elastic
waves.

The attenuation process begins when the elastic part of the decompression
wave overtakes the plastic part of the compression wave (see Figs. 10.7b and
10.23), an interaction producing a right-propagating shock moving into the
material in state 1 and a left-propagating shock moving into the material in
state 3. The analysis of this interaction proceeds exactly as described in
Sect. 10.6.2, and leads to the same solution. The waveform at times slightly
before and after the formation of region 5 is plotted in Fig. 10.24.

~ty —tu

Figure 10.24. Waveform at times (¢ =3.00 and 5.15us) slightly before and after the
first wave interaction for a pulse of amplitude in stress range D. The example refers to a
stress pulse of 1 ps duration and amplitude —4.5 GPa propagating in steel.
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Note that, if -—t,(,z) were somewhat larger, —tﬁ) would exceed tﬁEL and the
Hugoniot connecting state 1 to state 5 would encounter the plastic rather than
the clastic segment of the compression Hugoniot. The need to separate response
ranges at this point determines the upper limit on peak compressive stress de-
fining the response range of the inequality 10.33.
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Figure 10.25. (a) Stress—particle-velocity and (b) stress—strain Hugoniots for attenuation
of a compression pulse. The example is drawn for a stress pulse of amplitude —4.5 GPa in
steel with only the lower portions of the Hugoniots being shown.

The next interaction (see Fig. 10.23) is the collision of the left-propagating
shock taking the material from state 3 to state 5~ with the right-propagating
shock taking material from state 3 to state 4. To analyze this interaction we need
the #11 —v Hugoniots for right-propagating shocks centered on state 5~ and for
left-propagating shocks centered on state 4. Determination of these Hugoniots
requires examination of the f1—F11 and £2— E1n Hugoniots in order to establish
whether the transition process at issue is elastic or plastic. State 4 is at the re-
verse yield point, so the Hugoniot begins with an elastic segment that extends to
the forward yield point. Further loading produces plastic deformation. Since
state 5- is not at yield (see Fig. 10.24b), the Hugoniot centered on it begins with
an elastic segment taking the material to the reverse yield point and continues
with a plastic segment. Let us call the state at the intersection of these Hugoniots
state 6 (which we shall assume may contain a contact surface separating sub-
states 6 and 6" ). Examination of Fig. 10.25 indicates that the intersection of
these Hugoniots is such that the segment of the Hugoniot connecting state 5~ to
state 6* passes over the reverse yield point. This means that the decompression
shock will be unstable, separating into an elastic decompression from state 5~ to
the yield state (which we call state 6" ) followed by a plastic decompression
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from state 6" to state 6" . The transition from state 4 to state 6~ is an elastic
compression.

Applying the jump equations 10.1 to the right-propagating elastic shock
transition from state 5- to state 6 yields the values for the field variables in the
latter region. The analysis of the interaction is now completed by applying the
jump equations to the right-propagating plastic shock taking the material from
state 6** to the state 6* and the left-propagating elastic shock taking the mate-
rial from state 4 to state 6. The result is recorded in [30, App. B] and plotted in
Fig. 10.25. It is easy to verify that state 6™ lics on the yield surface and that the
stresses and strains are the same as in state 3, although the particle velocity is
lower. We find that state 6* lies below the HEL and is on the yield surface.
State 6~ involves even lower stresses and lies inside the yield surface.

Continuation of the solution requires analysis of several more interactions, as
indicated in Fig. 10.23. Some of these interactions are of shocks with other
shocks and some are of shocks with contact interfaces. In the following para-
graphs we briefly sketch the results of the analysis of the remaining regions
shown on Fig. 10.23. The state points associated with each of these regions are
plotted on the Hugoniots of Fig. 10.25. The field values in each of the regions
shown on the figure are given in [30, App. B] and illustrated in the stress—strain
and stress—particle-velocity planes and as stress profiles in Fig. 10.26.

State 7 is formed when the right-propagating transition from state 5~ to
state 6** encounters the contact surface separating regions 5~ and 5, We expect
formation of a left-propagating transition from state 6** to state 7- and a right-
propagating transition from state 5* to state 7*. Since state 5* is in the elastic
range, both compression and decompression from this state begin with an elastic
deformation. State 6** is at the reverse yield point so compression is elastic and
decompression is plastic. The 11 —v Hugoniots for a right-propagating shock
centered on state 5* and a left-propagating shock centered on state 6** intersect
at the point corresponding to state 6**, so we have the solution

D =($ y(MD =y (10.34)

The left-propagating shock is of vanishing strength since there is no jump in
either #1; or v. From the jump condition 10.1, we have

EQ) =EE, (10.35)
and we find from Eq. 10.12 that
(07 =¢85 (10.36)

In effect, there is no distinct region 7-; region 6" is simply extended to the
contact surface. Application of the jump condition 10.1, to the transition from
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region 5* to region 7* yields EU*) as given in [30, App.B]. Waveforms at

various times after formation of region 6 are shown in Fig. 10.26.
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Figure 10.26. This is a continuation of the sequence of waveforms begun in Fig. 10.7b
and 10.24, but with an enlargement of both horizontal and vertical scale. Waveforms are
for the times (a) =5.40, (b) t=5.72, (c) t=6.00, and (d) ¢=6.50pus. Arrows desig-
nate the direction of wave propagation. Elastic shocks carry no notation, but plastic
waves arc marked with their wavespeed, Cp . Numerals relate portions of the waveform
to the corresponding region of the X—¢ diagram.

State 8 is formed as a result of the encounter of the plastic decompression
wave with the contact surface through region 5. We expect formation of a left-
propagating transition from state 6* to state 8 and a right-propagating transition
from state 7* to state 8. State 6* is at reverse yield so compression is an elastic
process and decompression is a plastic process. State 7* is elastic: a small range
of elastic compression and a larger range of elastic decompression is available
before an elastic—plastic transition point is reached and deformation continues
as a plastic process. The intersection of the two Hugoniots of interest falls on the
main compression branch of the f;—v and £, — En paths at a point well below
state 6. Application of the jump equations to these shocks leads to the solution
given in [30, App. B].

State 9 is analyzed in the same way as the regions discussed previously. Like
the interaction producing region 7, this interaction produces only one nontrivial
shock, a left-propagating elastic shock. At the completion of this interaction, all
shocks in the field are elastic shocks; they propagate at the same speed, Co, and
all are propagating away from the contact interfaces, so there can be no further
interactions.
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Figure 10.27. Attenuation curve for a pulse in stress range D. The point x4 is defined in
Fig. 10.23 (steel).

The end result of a pulse-attenuation calculation is often presented in the
form of an atfenuation curve giving the maximum stress reached at each point x,
without regard to the time or duration of its application. Examination of
Fig. 10.23 shows that, for any point to the left of the interaction point Xa, the
stress is successively 0, — ](P R —-tl(lz) , and 0. Beyond the interaction point, the
succession of stress values is 0, — £, and —t$’ . Since 0 <5 <~ <P,
the attenuation curve is as given in Fig. 10.27. Note that the pulse amplitude
never falls below — £}’ =t} since no attenuating disturbance can overtake the
leading elastic wave.

It is worth pointing out that the attenuation process, as represented by the
peak-stress criterion used in drawing the attenuation curve, is completed with
formation of region 5. The several subsequent interactions that must be analyzed
to complete the description of the entire waveform cannot cause reduction of the

peak compressive stress below ¢/iE"

Attenuation of Higher-amplitude Pulses. The method outlined in the previous
section suffices for analysis of attenuation of a pulse of any amplitude.
Unfortunately, because of the multiplicity of stress ranges and the large number
of interactions that must be considered, the analyses become increasingly awk-
ward as attention is turned to pulses of ever higher amplitude. Several such
pulses have been analyzed in [30].

10.1.9 Numerical Solution of Weak Elastic—Plastic
Wave-propagation Problems

Computer software has long been available to carry out calculations of the sort
presented in the foregoing sections of this chapter. These results are exact within
the context of the theory. The more usual approach to these analyses, however,
is to apply software implementing finite-difference methods. This software is
widely used and capable of solving wave-propagation problems in the context of
much more comprehensive theories of material response than the theory of ideal
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plasticity at small strain. A shortcoming of this approach is that it is Eqs. 2.87 or
Eqs. 2.92 that are solved. These equations are applicable only to smooth waves
and cannot be used for the analysis of shocks such as occur in the solutions
presented in the preceding sections of this chapter. To circumvent this difficulty
an artificial viscosity term is included in the material description. This results in
the shocks being replaced by smooth, but steep, waves. Usually, the results
obtained by this method are satisfactory, but the many small steps that comprise
the wave are blended together to produce a smooth waveform. It is unclear what
the effect might be of wave interactions and contact interfaces that are closer
together than the resolution of the finite-difference analysis. These issues are
further obscured because shocks in real materials are not the mathematical
discontinuities of the theory, and measurements (particularly those made with
low temporal resolution) may further spread the recorded waveform. When
experimental observations are compared to numerical simulations, it is difficult
to separate effects of the many small wave interactions that occur from disper-
sion resulting from material behavior or artificial viscosity in the numerical
simulation.

10.2. Finite-amplitude Elastic-Plastic Waves

Finite-amplitude elastic—plastic waves propagating in non-hardening materials
are analyzed in much the same way as the weak elastic—plastic waves, but the
Hugoniot of Fig. 7.8 and the associated decompression path are used. Because
the compression—decompression loop is so slender, a schematic illustration
showing a broader loop is given in Fig. 10.28. The analysis of compression
waves is conducted using the nonlinear Hugoniot. Decompression waves sepa-
rate into two parts, an elastic wave taking the material from the shock-com-
pressed state to the state in which the shear stress reaches the reverse yield point,
followed by a plastic wave in which the compressive stress is further reduced.
The elastic decompression wave is of higher amplitude and propagates faster
than the elastic compression wave because of the nonlinear elastic response.
Because the decompression path is concave upward, the plastic part of the
process will occur in the form of a simple wave, although it is often analyzed as
a shock, as was done in Chap. 3.

-

Figure 10.28. Schematic illustration of an elastic—plastic Hugoniot and decompression
isentrope for a non-hardening material.
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Effect of Deformation Hardening on Waveforms. A schematic illustration of
a compression curve for a deformation hardening material is presented in Fig.
10.29. As discussed in Chap. 7, hardening usually leads to a curve that is con-
cave downward in an interval above the HEL. Processes that produce monotonic
compression can be analyzed in the same way as was done in Chap. 9 for elastic
waves. Transitions from the HEL to a state such as B on the concave upward
portion of the curve (but below its intersection with an extension of the elastic
curve below the HEL) comprise three or four parts. The leading part of the wave
is a transition from the unstressed state to the HEL.* This will be followed by a
plateau if an abrupt decrease in wavespeed occurs at the HEL and a centered
simple wave transition from the plateau to the point A, defined as the point of
tangency of a line from point B to the curve. Finally, a shock transition will take
the material from state A to the boundary state B. If the hardening curve is
tangent to the elastic line below the HEL at their point of intersection, the
plateau vanishes and the waveform rises smoothly from the HEL. This wave is
illustrated in Fig. 10.30.
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Figure 10.29. Illustration of a Hugoniot for a deformation hardening elastic—plastic
material. Note that the portion of the curve near point A is concave downward so a
transition from the HEL to a state on this part of the Hugoniot will occur in a centered
simple wave.
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Figure 10.30. A schematic illustration of the X —¢ plot and the waveform for a compres-
sion wave propagating in a hardening elastic—plastic solid for which there is a decrease
in slope of the compression curve at the HEL.

* Usually this transition is elastic, but it will involve plastic deformation in cases where
hardening causes the Hugoniot to be steeper immediately above the HEL than below it.
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10.3 Finite-amplitude Elastic—Viscoplastic Waves

Solution of wave-propagation and -interaction problems of the sort discussed
carlier in this chapter can only be achieved numerically for elastic—viscoplastic
materials. Nevertheless, there are two problems that can be discussed and that
illustrate important aspects of the behavior of elastic—viscoplastic solids.

10.3.1 Analysis of the Precursor Shock

We have seen that the shock produced in a plate-impact experiment involving an
ideal elastic—plastic solid immediately splits into a precursor shock producing
an elastic transition to the HEL state and a second shock producing a plastic
transition to the state imposed by the boundary condition. The response of an
elastic—viscoplastic material is somewhat different because the instantaneous
and equilibrium responses differ. At the moment of impact the material experi-
ences an elastic shock transition to the state imposed by the boundary condition.
The shear stress in the material behind this shock initiates dislocation motion
producing a gradual relaxation of this shear stress and a decrease of the ampli-
tude of the precursor. The precursor shock propagates at the speed appropriate to
its amplitude, decreasing as the shock is attenuated.

We begin by deriving an equation (called a shock-change equation) for the
rate of change of amplitude of a shock as it advances through the material*.

Shock-change Equation. Analysis of the changing amplitude of the precursor
shock is based on an equation giving the rate of change of the stress as perceived
by an observer moving with the shock. This problem can be analyzed using
either the Eulerian or the Lagrangian coordinate, but we shall adopt the latter.
The time derivative along a shock trajectory of a field ¢(X,¢) (written
Do(X,t)/Dt, where X and ¢ are related by the equation defining the shock
trajectory) is given by the equation

Do(X,1) _0e 4, 90
Dt ot X’

where Us is the Lagrangian velocity of the shock. When applied to the stress
and particle velocity immediately behind the shock, this equation becomes

* Shock-change equations are useful in contexts other than the present one of elastic
precursor decay. Any case in which a shock initiates an evolutionary process that affects
the shock itself is a candidate for application of a shock-change equation. Examples
include initiation or extinguishing of a chemical reaction in an explosive [84], kinetics of
a shock-induced phase transformation, and attenuation of shocks in viscoelastic and
viscoplastic materials {85].
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Dty _ otu(X, 1) +Us om(X, 1

Dt ot 0X
(10.37)
Dx 0x(X,¥) 0x(X, 1)
—_—= +Us .
Dt ot 0X
In addition, we have the conservation equations .
ox
ox "ot
(10.38)
ohi ox
L pp =
0X ot
in the region of smooth flow behind the shock and the jump equations
x=prUs(Vr —V)
(10.39)

i =-prUsx

for a shock propagating into material that is at its reference specific volume, is
unstressed, and is at rest. The ficld variables in the jump equations take the
values immediately behind the shock.

For our analysis we use the stress relation of Eq. 7.78,,
n=-p¥)+4 u(v)[l— v/vr) 13 (FP)? ] (10.40)

and we shall need the material derivative of this stress component,

P
at“(X,t)zplg c? vy _ SR (1041
ot ot ot

where Cf?, the square of the frozen soundspeed (the value for F;® held fixed),
is given by

paCL =—p' (V) +Epr p(V)(v/vr) 43 (F)!/?

(10.42)
AP W1- (/)13 (FD)2],
and where
K =20 (v/vr) V3 (FF) 2. (10.43)
Using Eq. 10.41 to eliminate dv/0t from Eq. 10.38,, we obtain
D om 5 Ox .
= Us L prCr——=—xFP, 10.44
D Cax PRty T b (1044

and using this equation to eliminate o#1;/0¢ from Eq. 10.37 gives
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= U Z =0, (10.45)
Dt 80X pr 0X

When Eqs. 10.44 and 10.45 are combined to eliminate 6x/0X we obtain the
result

Dm pr C2 Dx ohi .

- —(C-U¢ ———————-KF". 10.46
Dr  Us Dt Us (CE-UD) k (10.46)
We now introduce the x—# Hugoniot and note that differentiation along

this Hugoniot gives

Dx _ dx™(tm) D
Dt dm Dt
which can be used to eliminate Dx/ D¢ from Eq. 10.46 so that we have

, (10.47)

ot
(CE-U? )-“—+ x Us F;P

CLIN. S (10.48)
Dt 2 dx( )(th)

which is the shock-change equation sought. It shows that the stress rate at the
precursor shock depends upon the stress gradient and the plastic-deformation
rate behind the shock in addition to the material propertics. In the next section
we shall pursue this matter in more detail, but we first address some approxima-
tions that have proven useful in applications.

Isentropic Elastic Response. We have seen that a Hugoniot differs little from
the isentrope through the same initial state when the compression is small, as is
usually the case behind an elastic-precursor shock. Accordingly, we may replace
the Hugoniot appearing in Eq. 10.48 with the isentrope. Therefore, both the
Hugoniot and the isentrope are given by Eq. 10.40, with F;P =1 since there is
no plastic deformation in the precursor shock. The soundspeed immediately
behind the precursor is given by

c2=- ‘“;(v) (10.49)
pr 4V

where the function #,(v) is the isentrope in this case, which is taken to be the
same as the Hugoniot.

Elimination of Us from the jump equations 10.39 yields the result
(D)2 = -vr) W), (10.50)

Differentiation of this equation and use of Eq. 10.49 yields the result
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dx®e) 1| ) 2 (V=R)
-l + 10.51
dv 2| 3@y PREL @, (10.59
which can be expressed in the form
dx™w) _ pr
b A\ Cc:-U. 10.52
dv 2Us( ¢ -Us) (10.52)

by use of the jump equations. When substituted into the soundspeed equation

_dfP() dt(H)(x) dx® )

2 2
C 10.53
ProL = dv dx dv ( )
that follows from identifying the isentrope with the Hugoniot, this gives
<H>(x) 2px CRU.
RL S 10.54
oo (10.54)
so, Eq. 10.48 becomes
ot
D (C2-U{ )_L‘ +k Us P
LA (10.55)
Dt 3 1¢}
Us —————Lz—
2 20

in the isentropic approximation.

Linear Elastic Response. When the elastic response is taken to be linear the
shockspeed and the soundspeed are equal and Eq. 10.55 takes the much simpler
form

Dn

Dr L MR F ( )

Constitutive equations for FL” depend on the stress, so we need to develop
linear approximations to the stress relations of Eqs. 7.79, which are
tn = -p() - 4pM| 1-@ /)]
t ==p@)+2pW)[1-/ve) 3],

when FP =1 as is the case immediately behind the precursor shock. In the
linear approximation, the pressure term in these equations is

(10.57)

P =(Ar +3pr)[1-(/vR)], (10.58)
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where Ar and pr are the constant Lamé elastic coefficients. To first order in
1-(v/vr) we have

1- (v/vr)-13 =-1[1-(v/vr)], (10.59)
so Eqs. 10.57 become

i =~(kr +2pr)[1-(v/vg)]

tn=-Ar[1-(/w))].

We shall need the maximum shear stress associated with this stress field, which
is

(10.60)

HR 4. (10.61)

1
Tase =—(fn — ) =——h
2 )»R +2}LR

With this definition t4se is positive in tension and negative in compression.

Precursor Shock Attenuation. Let us begin by examining Eq. 10.55. We note
that Cp and Us are both positive, with Ci being moderately greater than Us ,
so both the denominator of Eq. 10.55 and the coefficient of the stress-gradient
term are positive. The coefficient k is also positive, so the term «x Us FL" has the
same sign as FL" , which is negative for a compression shock. The stress-gradi-
ent term accounts for the effect on the precursor amplitude of wavelets overtak-
ing the shock from the rear and the term involving FL" accounts for the effect of
viscoplastic flow on the amplitude. When the material is being compressed the
effect of the dissipation term is always to make Dty /D¢t positive, i.e., to make
1 become less negative. There are two cases to consider when evaluating the
effect of the stress gradient term, as shown in Fig. 10.31. Part (a) of the figure
shows a waveform with positive stress gradient immediately behind the shock.
In this case the stress-gradient term tends to make Dtf;i/Dr negative, and
thereby make the stress become more negative. The opposite trend prevails for
the waveform in part (b) of the figure.

A A

—h —h

X X
(a) (b)

Figure 10.31. Elastic—viscoplastic waveforms showing gradients of different sign
behind the precursor shock. (a) 0f11/6X >0 and (b) 8611/6X <0.
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The complexity of the elastic—viscoplastic constitutive equations makes it
necessary to resort to numerical simulation to obtain solutions that would exhibit
waveforms of the sort illustrated in Fig. 10.31. Finite-difference and finite-ele-
ment methods are usually used to solve problems of this class, but it may be
necessary to solve the shock-change equation in conjunction with this method of
analysis if the precursor behavior is to be simulated satisfactorily. However,
when the precursor attenuation problem is posed in terms of the simplified shock-
change equation 10.56 it is often possible to obtain the attenuation curve ana-
Iytically.

The plastic part of the deformation gradient is related to the stress by Eq.
7.131, which we write

FP =nB/vr) V3 No fo Va(rase) 1+ L E°)FP, (10.62)

in view of the fact that Ny =No, fu=fo, and Ff =1 at the precursor
shock. Among the several equations for V(1) that have been proposed we shall
adopt one of the simpler ones,

0
V(tase) =~ Vo Tasc =T _ _ Votll_otll , (10.63)
o h

for 4; st,‘; <0. When Eq. 10.63 is substituted into Eq. 10.62 and that result
substituted into Eq. 10.56 we obtain the equation

0
D __HR =1t

, 10.64
Dt to 1101 ( )
with £o being given by
1/to =2mB/vr) 3 No foVy (1+LE). (10.65)
From Eq. 10.60 we find that
A (10.66)

—,
VR AR +2UR

Since the second term of this equation is very small relative to the first at the
stress level of the precursor we shall neglect it. Similarly, |£™ |<1 and we
shall neglect it as well, leaving us with

1/to =27BNo foV, . (10.67)
When ¢ is given by Eq. 10.67, the solution of Eq. 10.64 is

t
f =15+ (B = £2) exp [P—OR———] , (10.68)
t o
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where £ is the stress imposed on the boundary at £=0. Since ¢} <0 thisisa
decaying exponential function of time. Since the precursor is propagating at the
constant longitudinal elastic wavespeed, the temporal attenuation curve of Eq.
10.68 is equivalent to the spatial attenuation curve

X
=10 +(tB -1y exp| R . (10.69)
n =iy 1" P tlol Cito

This equation is compared to some data for a mild steel in Fig. 10.32. Examina-
tion of this figure shows that the predicted attenuation rate is less than that
observed in the material layer nearest the surface. Three explanations for this
have been offered. The first is simply that the linear elastic-response equation
10.56 neglects the attenuation due to the overtaking decompression wave asso-
ciated with a precursor spike as in Fig. 10.31b. This issue has been studied by
Herrmann [55] and Clifton [22]. A second possibility is that the dependence of
dislocation velocity on the shear stress given by the equation used here, Eq.
10.63, is incorrect. Various theories of dislocation velocity have been offered
and the effect of changing the velocity equation is easily investigated. Another
potential explanation that has been advanced is that the dislocation density is
higher near the surface of the material tested than in its interior. This increased
density would result from damage introduced into the lattice during sample
preparation and to slight, but unavoidable, surface roughness. As shown by Eq.
10.65, the increased dislocation density results in a decreased characteristic
response time and, thus, a more rapid attenuation rate. A short segment of an
attenuation curve calculated using a 40% higher dislocation density (a very
small change relative to the usual variation of this parameter) is shown on the
figure and can be seen to fit the data better in the region near the boundary. We
see from this discussion how the interplay of continuum analysis with the moti-
vating microscopic basis of the theory can lead to improved understanding of the
physical process. The most precise and comprehensive investigations of precur-
sor attenuation have involved measurements of waveforms propagating in care-
fully characterized lithium fluoride monocrystals. When the measurements are
compared to theoretical predictions, it is found that the continuum analysis is in
good agreement with the observations, but dislocation-mechanical equations and
parameters employed to achieve this agreement are inconsistent with the best
understanding of this aspect of the physics. A brief review of this work, with
additional references, is given in [59, p. 226]. It is a common observation that
continuum theories motivated by microscopic considerations prove more
broadly valid than the underlying microscopic theory.

10.3.2 Steady Waves in Elastic—Viscoplastic Solids
In Sect. 2.5.3 we considered the possibility that a structured longitudinal wave
could propagate at a constant velocity and without changing form, i.e., the field
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Figure 10.32. Spatial attenuation data for a mild steel [23] in comparison to a plot of Eq.
10.69.

variables could be expressed as functions of the single independent variable
Z=X-Ust, where Us is a constant Lagrangian wavespeed. We know that
shocks propagate in this way, so the point of this discussion is whether or not
there are also smooth steady waves. In this section we shall show that smooth
steady waves can propagate in some elastic—viscoplastic materials. In Sect. 10.2
we noted that the compression curve for hardening materials is usually concave
downward in a stress interval immediately beyond the yield point and that this
causes a centered simple wave to form between the elastic precursor and the
main shock. When we consider an elastic—viscoplastic material the situation
becomes more complicated because the motion that occurs immediately behind
the precursor can no longer be a simple wave. The main shock will be structured
as a result of the viscoplastic flow, and the interaction among the various parts
of the waveform can only be determined by numerical solution of the governing
partial differential equations. When work hardening is absent, we will find that
steady waveforms exist and it is this problem that we shall address.

Our first step in solving this problem is determining the Hugoniot curve, the
locus of endstates behind steady waves of various strengths. The next step is
determination of the field variables in the wave as functions of the specific
volume. Finally, we must determine the waveform itself, i.e., the fields as func-
tions of the steady wave coordinate Z. We shall see that the Hugoniot is deter-
mined in the usual way and is independent of the waveform or the rate at which
the deformation is produced. Determination of the field variables as functions of
v appears, at first, to involve the rate of deformation, but this proves not to be
the case. The waveform does depend on the rate equations but, since this is the
last step of the analysis, it is easy to investigate the effect of changing the
evolutionary equations without reworking the entire analysis.
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The equations to be satisfied in a steady wave were shown to be

d .
E'Z-(X'*"DRUSV):O
(10.70)
d .
—(n +pr U =0,
dZ(“ pr Us x)

Integration of these equations shows that the jumps between any two states in a
steady wave satisfy the same equations as for a shock transition between these
two states. In the case of a transition from a known Hugoniot elastic limit to any
other state in the waveform, we have

X +pPR Usv = xHEL +pRUsvHEL
(10.71)
m +pRUsJE?=—t1}1£EL +pr Us xHEL |

We expect that the steady waveform will extend over the entire range
—w < Z <. The state approached as Z —» o will be the HEL state and that
approached as Z — —o is to be specified as a boundary condition. When Eqs.
10.71 are evaluated at the endstate behind the wave, i.e., in the limit Z —» ~,
we have

x*+prUsv" = xHEL +pr Us yHEL
(10.72)
l‘f, +pRUs xt =-—tﬁEL +pRUs xHEL

These are two equations relating the four variables Us x*, f,, and v*, one of
which is specified as a boundary condition. To complete the solution it is neces-
sary to select constitutive equations, and we shall use those of Sect. 7.3.

It is important to note that the Hugoniot depends upon the yield stress but not
upon the evolutionary equations for the dislocation-mechanical parameters N
and fur or on the plastic deformation rate F;? . These quantities determine the
waveform, but not the endstate.

Variation on the Rayleigh Line. Let us now turn to determination of the field
variables as functions of v within the waveform, i.e., along the Rayleigh line.
The evolutionary equation for F;” , Eq. 7.131, can be written

EP =P(v,FP)FP, (10.73)
where

P, FP)=1nBu/vr) ™3 No fo Ve(tas) [3— (v/vr) 3 (FP) 21 FP . (10.74)

In writing this equation we have used Eq. 7.68 to eliminate E;°. We shall also
need the material derivative of £; that, as given by Eq. 10.41, is
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m=piClv-xFP, (10.75)

where CL2 and x are functions of v and F;" that are given by Eqs. 10.42 and
10.43, respectively.

In a steady wave the material derivative is given by

o() U a()
- =—-uUs——,
o |x dZ
so Egs. 10.73 and 10.75 take the forms
dFP 1
—L —___ pF? 10.76
iz~ Us *© (10.76)
and
p
dv__ 1 jd AR (10.77)
dz plcildz =~ dz

respectively. Substitution of Eq. 10.76 into 10.77 and use of Egs. 10.70 to elimi-
nate df/d Z yields the result

dv xk PFP

— =L (10.78)
dZ  pgUs(CE-Ug)

Substitution of Eq. 10.76 into this equation places it in the form

dv _ K dFf
dZ px(C}-U3) dZ

, (10.79)

from which we obtain the differential equation

dFp

2
=Pr(c2_u) (10.80)
dv K

for F;P(v) . Note that this equation involves only the variables F? and v so its
solution gives F;P(v) without consideration of the rate of deformation or the
dislocation-mechanical variables. We expect to have dF’ /dv>0 in a com-
pression wave so, according to Eq. 10.80, the steady wavespeed must fall in the
range 0<Us <Cr. When a value in this range is selected the equation can be
integrated to yield the function F{¥(v).

Substitution of CZ (v, F;P), as given by Eq. 10.42, and (v, F{¥), as given
by Eq. 10.43, into Eq. 10.80 yields the equation
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dFf 172
+2HWFEP =2 L()(FD)V2, (10.81)
v
where
'v) 1
A A\
"(‘1’) 3 (10.82)

= (v/vR)13 [- P (V) +4W (V) —pa US].

4p(v)

This equation is a special case of a first-order ordinary differential equation
called Bernoulli’s equation that can be transformed to the linear equation

YyM+fimy=r2(v) (10.83)

by introducing the new dependent variable y =(F")!/2. The solution of this
familiar equation is

(FL")“2 =y=¢() {1 + fZ(‘j’) dv’} R (10.84)
JHEL @(V)
where
p(v)=exp|- j e()aV'|, (10.85)
yHEL

and where we have imposed the boundary condition F;*(vFEL)=1. Evaluation
of Eq. 10.85 yields the result

u(vm)( v )“3
= 10.86
00) == S (10.86)
and evaluation of the other integral gives
1/3
v o, 1 yHEL
——ﬁ(,)dv == (—) [p()-p™Y)
JHEL @(V) 4p(vT w (10.87)
— 4RO+ 4N — pg U (0 —v)],
so the solution we seck is
WHELY (v 1/3 1 b \173
(FP)I/Z - [ ) - _ V) — vHEL
z o) 20 m [pM-p(v™) (10.88)

—4p@)+4p (L) —pR U (L —v)].
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With this solution in hand, Eqs. 7.79 give the stress components at points in the
waveform as functions of v. The particle velocity x(v) can be obtained from the
jump equations, which completes the determination of the mechanical field
variables as functions of the specific volume at points on the Rayleigh line.

From Eqs. 7.134 we have equations for the dislocation density and mobile
fraction as functions of v:

N1 =NT +[No —NT ] exp (Lw yP / B)
Su = fa+fo-finl exp(LmyP/B),

where yP is given by Eq. 7.82 and when the initial conditions N1 = N¢ and
Jum = fo are imposed at yP =0 .

(10.89)

Example Calculation. The foregoing equations have been solved numerically
for steady waves of various amplitudes propagating in aluminum alloy 6061-T6.
The parameters used are given in Table 10,2 and some of the particulars of the
several calculations are given in Table 10.3. Dislocations were allowed to multi-
ply from an initial value of 10" m™ to a possible maximum of 10'* m™. The
dislocation density increase with compression is illustrated in Fig. 10.33. Sev-
eral of the x(¢) waveforms are presented in Fig. 10.34 and the peak strain rate
as defined by Swegle and Grady [94] is plotted in Fig. 10.35.

Table 10.2. Material parameters used for steady-wave analysis

pr =2703kg/m3 11 =10.5GPa
Cp=5190m/s B=2860x10"1%m
S =1338 No=1012m2
p(v)=pr =27.6GPa NT =108 m 2
tHEL = 0.5810 GPa fo=1
vHEL= 3 6802x 10 m3/kg S =04
#HEL =33 56 m/s La/B=10
76 =0.1453GPa Lm /B =100

Table 10.3. Steady-wave parameters

Us,m/s -1;,GPa  x*,m/s EpP* Ny » 2 T max , 45~
5400 2.064 169 0.9874 1.38x1016 0.103
5450 2.625 207 0.9829 1.70 0.288
5500 3.224 245 0.9782 2.05 0.845
5550 3.781 283 0.9741 236 2.017
5600 4.375 320 0.9698 2n 4.178

5700 5.590 394 0.9614 3.40 13.584
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The quantity 7 is the compression relative to the HEL, n=1-(v/vEL), so
f\=-v/vHEL | To calculate fimax , which Swegle and Grady call the maximum
strain rate, we note that v =—Us (dv/dZ) where the derivative is given by Eq.
10.79. One simply selects the maximum value of this derivative from the calcu-
lation and uses the foregoing equations to calculate Mmax . Values of Mmax
determined by direct examination of the waveform in either graphical or nu-
merical form exhibit considerable scatter, and this uncertainty must also arise in
interpreting experimental results.

1018
B Nt
16 _|
s 10 1 ,
& 10"
10" T T T
0 2 3 4

1
Nmax , %

Figure 10.33. Dislocation multiplication and immobilization as the material is deformed
during passage of a steady wave propagating at 5550 mv/s. The compression is measured
relative to vHEL ,1j=1—-(v/vHEL),

350
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E 200
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¢ 150
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0 ‘ T
-05 0.0 0.5
t,ps
Figure 10.34. Typical steady waveforms calculated using the theory and parameters

discussed in this section. The numbers below the curves identify them by the value of
Us inm/s.
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Figure 10.35. Peak shock stress plotted as a function of strain rate as defined by Swegle
and Grady [94]. The data plotted by circles are from the foregoing paper but, as noted by
these investigators, the waveform yielding point at the lowest stress was probably not
steady and the point is, therefore, likely to be set at too high a strain rate. The solid line
through the plotted points is simply an indication of the trend of the calculated results and
the broken line indicates the slope corresponding to the fourth-power law discovered by
these authors. One can see that the calculated line is slightly less steep than the fourth-
power law.

10.4 Exercises

10.4.1. Using the theory of weak elastic—plastic waves, derive equations for the
interfacial stress and particle velocity produced by the impact described in Sect.
10.3 and illustrated in Figs. 10.3 and 10.4.

10.4.2. Consider the experiment depicted below. The sapphire crystal responds
elastically and is characterized by the properties pr =3988kg/m* and Co =
11,186 m/s. A laser velocity interferometer can be configured to record the
particie velocity history at the interface between the aluminum alloy sample and
the sapphire. The recorded interface velocity is shown in the right panel of the
figure. Using the theory of weak elastic—plastic waves, plot the X—r and £; — x
diagrams for the experiment and determine Co and Cg for the aluminum.

Al alloy Al alloy Sapph]re plate 100 100 — |
projectile target
plate plate 2 50 0.963
xp =200 m/s -5 mm— pr =3988 kg/m3 *» 17.89 — H
PR = 2700 kg/m® | Co =11186 m/s 0 .
L 0 0785 1 ¢ g

Figure for Exercise 10.4.2
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10.4.3. Consider the experimental arrangement shown below in which a metal
projectile impacts a stationary target of the same material (taken to be an elas-
tic—plastic material that is adequately described by the theory of weak elastic—
plastic deformation). The impact velocity is measured to be 136 m/s. A quartz
plate configured as a stress gauge is bonded to the back of the target plate. The
stress history at the interface of the target plate and the sample is measured by
the gauge and the record obtained is shown. Describe the procedure for inter-
preting the experimental result

1.08
1.5 1.49

1.31 ‘J

Projectile Target | Quartz gauge £ 10 1.05
plate plate (D“ ’ 0.87— '
e —136mss |smm_| =2650kgn] T 05 r

= S —

pr =7870kg/m> 0.0 T
! 0 1

tus
Figure for Exercise 10.4.3.

10.4.4. Calculate the shape of the stress pulse produced when a compressive
stress —fi1 =10 GPa is suddenly applied to an aluminum alloy 6061-T6 half-
space and removed after 2 ps. The aluminum is modeled as a non-hardening
elastic—plastic material characterized by the parameters pr = 2703 kg/m3,
Cs=5190m/s, S=1338, ur=276GPa, u =0065GPa?, u»=0,
Yo =0.29 GPa, and v)]*" = 3.680x 104,

10.4.5. Calculate the compression waveform produced when a stress
—h1 =5GPa is suddenly applied to a hardening elastic—plastic material char-

acterized by the parameters h =10 and n =2 in addition to the parameters
given for the previous exercise.



CHAPTER 11

Porous Solids

Porous materials consist of a solid constituent intermingled with voids. Exam-
ples include natural materials such as soils, and a variety of manufactured mate-
rials such as lightly compacted powders and powder mixtures. They are of
interest because the shock transition provides experimenters access to states of
high pressure and very high temperature, because the shock compression proc-
ess offers a means of producing new and unusual materials, and because they are
unusually effective as shock attenuators.

In this chapter the porous material is treated as a continuum, so it is neces-
sary that the characteristic scale of its microstructure (void diameter, etc.) be
small relative to the size of objects to be investigated. It is often necessary to
distinguish between the solid constituent of the porous material and the porous
material as a whole. To facilitate this distinction we call the solid constituent the
parent matter. General aspects of wave propagation in porous materials (e.g.
waveforms, and shock attenuation) can be analyzed without detailed considera-
tion of deformation occurring on the scale of the pore size, but details of the
microstructure and the response of the material at this scale are important when
bonding of powder particles, chemical reaction, etc. are of interest.

It is clear that the pore-collapse process is quite complicated, being associ-
ated with irregular motions, very large strains, and high temperatures in the
neighborhood of each void. These local inhomogeneities lead to chemical, physi-
cal, and metallurgical effects that are not observed when the parent solid is
placed in the same average thermodynamic state. The experimental literature
addressing chemical, physical, and metallurgical effects peculiar to shock-com-
pressed porous materials is extensive [50,83]. Chemical reactions and phase
transformations occurring as a result of shock compression of porous materials,
usually lightly-compacted powders, have led to the production of a variety of
unusual materials. Initiation of detonation in porous explosives is often a result
of the localized high temperatures produced during shock compression [8,27,
89].

The important effect of mesoscale aspects of porous material compaction
upon chemical and metallurgical responses of these materials has motivated
development of a number of theories that bridge the gap between those in which
the material is modeled as a homogencous continuum and fully resolved meso-
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scopic models. In general these theories, or computer simulations, are intended
to capture void-collapse processes, the interactions among grains of a compacted
powder, etc., along with the localized heating, material mixing, chemical re-
action, and other phenomena that are important to understanding and using the
unique responses of porous materials to shock compression.

Use of shock compression of porous materials for determination of the
equation of state of materials at high temperature and pressure has been dis-
cussed in [67,68,104]. A variety of issues regarding the physical and chemical
response of porous materials to compression by weaker shocks have been
discussed in [10,33] and a comprehensive account of the mesomechanical
aspects of shock compaction of porous materials has been presented by
Nesterenko [83].

11.1 Materials of Very Low Density: Snowplow Model

Let us consider a highly porous material of low strength. Light, dry snow (ice
crystals, the parent matter, separated by void space) is an example of such a
material. If we were to compact this material with a piston in a confining cylin-
der, we would observe a stress—volume response like the compression curve of
Fig. 11.1. The low-stress, gently sloping part of the curve is produced during
compaction of the pores. The parent matter is not significantly compressed
during this stage of the process. As the compaction proceeds, the pores are
eliminated and further decrease in volume must arise through compression of
the parent matter. This requires application of much greater stress, correspond-
ing to the steep portion of the curve. Indeed, we can suppose that this latter stage
of the process is essentially the same as if we began the process with a non-
porous sample of the parent matter.

Let us idealize the curve by a horizontal and a vertical segment, as indicated
by the broken lines on the graph. This idealization corresponds to a material that
can be compacted to a non-porous state without application of significant stress,
A —— compression curve
— ~ idealized curve

=t

------ Hugoniot for solid

R

¥ T >

;
VC Vs VPR V

Figure 11.1. Compaction curves for a low-density porous material.
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and that can be considered incompressible when fully compacted. Let us now
consider propagation of a shock into this idealized material when it is in the
reference state S-={f;;=0,%",v-=vg,s~=0}. Suppose that the material
initially occupies the halfspace x=X =0. Let a compressive stress step be
applied to the boundary at f =0, and let the magnitude of this stress be such that
the particles acquire the constant velocity x*+ >0 . At the later time #, the bound-
ary X =0 will have moved to the place x = x*¢ and the shock will be at the
place x =ust . Since the material behind the shock is fully compacted it has the
specific volume vsr (the specific volume of the parent matter at the ambient
condition). The material layer that was initially of thickness AX =(us—x")¢
now has the reduced thickness Ax=(us—x*+)t. Since the mass of the layer is
unchanged by compaction, we have

VR

. VSR .
us= xt - X7, (1.1
VR —VSR VR — VSR

exactly the result that would have been obtained by application of the jump
condition of Eq. 2.110;. The driving stress, which can be calculated directly by a
process similar to that used above, or from Eq. 2.1102 is

1., .
—th = —— (" -3%7)?, (11.2)
VR — VSR

and the specific internal energy of the material behind the shock is given by

& =1(&* —7)? =L vr - vsr)(-4)) (113)
By combining Eqs. 11.1 and 11.2 we find that
PN
Us =VR (-—“J +%7, (11.4)
VR —VsR

which shows how the Eulerian shock velocity depends upon the slope of the
Rayleigh line for the shock. It is easy to see from Fig. 11.1 that weak shocks,
analyzed according to this model, propagate very slowly relative to the velocity
of a shock of the same pressure jump in the parent solid.

When this model is used, it is usually assumed that the compacted material
does not expand when the stress is relieved. This means that an unloading proc-
ess would proceed along the vertical line in the figure. The Lagrangian speed of
this wave would normally be given by Eq. 9.10,, Cr =[vr 8(-f11)/0v)% , which
gives an infinite value for the model under discussion. The corresponding
Eulerian wavespeed is also infinite.

Loading by a Flat-topped Pressure Pulse. Let us consider what happens when
the boundary of a porous body occupying the halfspace x =X >0 is subjected
to the stress history —~#11(f) = p(f) given by



296 Fundamentals of Shock Wave Propagation in Solids

0, <0
p=13 pr>0, 0t (11.5)
0, t>r".

In this model the compacted material forms a rigid layer that is subject to the
pressure p* and is moving at the velocity

%+ =[(VR —VSR)P+]1/2 .

0 i*t gt x ve Vpr ¥ xt x

(@ (b (©

Figure 11.2. Shock propagating into a porous body. The configuration at ¢>0 is shown
in (a). The p—v and p—% Hugoniots are shown in (b) and (c), respectively.

When the stress is suddenly removed from the boundary at ¢ =¢* this fact is
instantaneously communicated throughout the compacted layer and to the inter-
face with the undisturbed material by a right-propagating shock of infinite
velocity. This shock decelerates the compacted material to zero velocity. Be-
cause of the assumed locking response of the material, the compacted layer does
not expand upon pressure release. The Eulerian x—t diagram for this loading—
release process is given in Fig. 11.3.

A

! trajectory of
unloading shock
t*
&
/4
N4 ok,
&
S ;,/’ = v@'

L.
o

X

Figure 11.3. Eulerian x—¢ diagram for response to a flat-topped pulse introduced into a
locking porous solid.
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The specific internal energy of the compacted layer is
et =%(5c+)2 =—;-(vR —~vc) p* (11.6)

when it is under pressure. At this time it also has the specific kinetic energy
g+ = (%+)2/2. When the pressure is relieved the motion ceases and this kinetic
energy is converted to internal energy so the specific internal energy e*+ in the
compacted, but depressurized, material is given by

g+t = (k)2 =2e+. (11.7)

It is easy to see that this is exactly the work done upon the boundary divided by
the mass of the compacted material (both for a unit-area cross section). The
residual temperature of the compacted material is increased over the initial
temperature of the material by the amount
_ 1 . 1

AB=0""—8" = x+)2=_67(vR—VSR)p+, (11.8)
where C? is the specific heat at zero pressure and the temperature 6++. All of
the work done by the pressure pulse applied to the boundary is converted to
heat.

Porous materials are often used as structural overlays to attenuate pressure
pulses, and this analysis shows how the attenuation is accomplished. An indica-
tion of the temperatures achieved by a shock—release process in porous metals is
given in Fig. 11.4. It is often inferred from Eq. 11.6, or 11.8; that an enormous
specific intemnal energy can be imparted to highly distended porous materials if
they are subjected to shocks of high pressure. This is true, of course, but it is
important to realize that these highly distended materials are very soft and must
be impacted at very high velocity if a high pressure is to be produced.

2000

Pb Ag / Cu

A9, K
1000
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} § ! !
4 4 t 1
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Figure 11.4. Temperature change in several porous metals accelerated by shocks of
various strengths, as measured by particle velocity jump. When the shock strength is
measured in this way, the temperature is independent of the initial porosity. Representa-
tive constant specific heats are used.
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11.2 Strong Shocks

In the foregoing section, we considered the response of highly porous material
to rather weak shocks—those strong enough to compact a very soft material but
not strong enough to compress the parent matter significantly. In this section, we
consider shocks that are far stronger than necessary to compact the porous
material. We shall characterize the materials considered by simple thermody-
namic properties so that explicit results can be obtained and the basic responses
illustrated most directly. This restricts us to states of moderate pressure and
temperature. Work conducted at the highest attainable pressures has been re-
viewed by Trunin et al. [104] and many important references are cited in this
work. The objective of shock-compression experiments conducted in the high-
pressure regime is to determine thermodynamic properties of the material in
states of higher temperature and mass density than can be produced by other
means.

Our first task is to determine the Hugoniot of a porous material from known
properties of the parent matter. The Hugoniots of the porous material and the
parent matter are as indicated qualitatively in Fig, 11.5.

A A
n Us p P PHI ()
prlp =0
vE v EveR PH9@)
il xT=0 ~P® ()
R P (v)
et e =0 /
Y —> . R
V. VYsr Vprp ¥V VSR Vpr VvV
(a) ®) (©

Figure 11.5. (a) Shock propagating into a porous material at rest in its reference configu-
ration. (b) Pressure—volume Hugoniot for the porous material, p()(v), and for its
parent matter, p(HS)(v). (c) Idealized pressure-—volume Hugoniot for the porous mate-
rial.

As suggested by Fig. 11.5b, the specific volume of the porous material at
p =0 is vr and the specific volume of the parent solid at p =0 and the same
reference temperature is vsg . Since we are considering pressures much greater
than that required to compact the porous material to vsr , we shall assume that
the compaction pressure is zero so that the higher-volume portion of the
Hugoniot of the porous material lies along the axis in the interval vsg <v<vr,
as shown in Fig. 11.5¢.
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The Hugoniot of the porous material that has been fully compacted and for
which p>0 can be determined by calculating its pressure offset from the
Hugoniot for the parent solid. The specific internal energy, e (v), of the
porous material and that of the parent solid, £(HS)(v), are related to the
Hugoniot by the appropriate Rankine—Hugoniot equation:

e W) =¢er + %p(H) (v) (vr —v)

(11.9)
gHS)(v) =gsr + %p(HS) (v) (vsr — V).
These two Hugoniots can be related by the Mie—Griineisen equation
H) () = p(HS YOI (1) () — e(HS
P (V) = pl )(v)+T[s( W) —eE) (1) ]. (11.10)

Since the analysis is restricted to the range in which the material is fully com-
pacted, the Griineisen coefficient used is that for the parent matter. Substitution
of Eqs. 11.9 into Eq. 11.10 gives

|10

" (Vsr —V)
P V)= ————— pES)(v), (11.11)
1—12(—?% -v)

where we have neglected the surface energy distinguishing the porous and solid
materials at p=0 and 6=0r so that er =esg . When the Hugoniot of the
parent matter is given by Eq. 3.12, Eq. 11.11 takes the more specific form

P ) =

(psr CB)?(Vsr — V) [2\1 —y(v)(vsr —V)

). (1.12)
[1-psr S(vsr =W]* | 2v =y (V) ('r —V)

In applying this equation, y(v) is often taken to have the form

YO) =5 g (11.13)
where ysg , Griineisen’s coefficient for the parent matter in its reference state, is
a material constant. Some representative Hugoniots obtained from Eqgs. 11.12
and 11.13 are shown in Fig. 11.6.

Note that the value of p@n(v) given by Eq. 11.12 is indeterminate at
v =vsr when the reference specific volume has the value

VR =V [1+—2—J. (11.14)
Ysr
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When vz exceeds this value the slope of the Hugoniot changes sign: The spe-
cific volume of the shock-compressed porous material exceeds the reference
specific volume of the parent solid. This behavior is observed for highly porous
materials, but the temperature of these states is very high and neither Eq. 11.13
nor any other temperature-independent equation for Griineisen’s coefficient
provides an adequate representation of y (see [67,68,104] and [11, Appendix] ).
The simple theory of this chapter is restricted to states for which Eq. 11.13 is
adequate.

A
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150 | \
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Figure 11.6. Hugoniot curves for distended copper calculated using Egs. 11.12 and
11.13. Not shown is a horizontal segment of each curve that extends along the line p =0
from the value of vg/vsr for the curve in question to the value of v/vsg =1.

When a solid material and a highly distended porous sample of the same
material are subjected to the same shock pressure, the internal energy imparted
to the porous material is very much greater than that imparted to the solid, as
suggested by the drawing of Fig. 11.7 (according to Eq. 11.11, the shaded areas
represent the increase in internal energy). Corresponding to the high internal
energy in the porous material, we have a high thermal contribution to the pres-
sure. This means that the cold contribution to the pressure in the porous material
is less than in the solid material and the specific volume is correspondingly
greater, as indicted on the figure. For highly distended materials subjected to
high pressure, the thermal component can be larger than the total pressure. This
means that the cold component must be tensile, and the specific volume greater
than that of the parent solid at p =0 as is predicted by Eq. 11.12. It is important
to realize that, although the qualitative effect described is observed, the confi-
dence one can place in the numerical values produced by this analysis is low by
virtue of the extrapolations involved (the solid Hugoniot is extrapolated into the
tensile region and the porous Hugoniot is far removed from this solid Hugoniot).

Measurement of a single Hugoniot provides very little thermodynamic in-
formation. When a parent material can be prepared as samples of various de-
grees of porosity, shock-compression experiments providing Hugoniots covering
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an area of the p—v plane can be performed. In principle, fitting a surface to these
data yields an equation of state € =e(p,v) for the range of state variables
covered. In practice, this has not proven practical, but such data are useful for
guiding the development of theoretical equations of state. For example, the ratio
(pH) — pH2))/(e () —e(H2)) calculated from two closely spaced Hugoniots
provides an estimate of Griineisen’s coefficient for various values of specific
volume. Since compression of highly porous materials by strong shocks pro-
duces very high temperatures, experiments of this sort are useful for investi-
gating the properties of matter at temperatures and densities that cannot be
produced by other means.

A
—— pES(Y)

- pU()

VSR VPR ¥V

Figure 11.7. Hugoniots for solid and porous samples of the same parent matter, showing
the relative thermal energy imparted by the shock.

The temperature of material in states on the Hugoniot is calculated for po-
rous materials in the same way as for the parent matter by solving Eq. 5.142,

AV | ow)0® )= k),

with

¢(V)=w=@— and K(v)=—1——[p<“>(v)+(vk —v)f"i’-(i)iv—) . (11.15)
v VSR 2C¢ dv

The Hugoniot of the porous material, p()(v), is related to that of the parent
matter by Eq. 11.11 or the more specific form, Eq. 11.12.

The solution of this equation is

) =% (v) C+J. K(v:)dv’ , (11.16)
o

where c is a constant of integration and
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A (V) = exp [Yﬂ(m - v)] :
VSR

Since the Hugoniot lies along the line p =0 on the interval vsg <v <R,
k(v) =0 in this range and Eq. 11.16 can be written

0y =y (v) {c + j- ﬂdv} .
vse X(V)

Because the compaction pressure is taken to be zero, no work is done during the
compaction process and the temperature remains at its initial value, 6 =0r,
throughout the range vsg <v <vr. Therefore, the constant of integration is
determined to be ¢ =0r /y(vsr) and

0 () = 1 (v) ——eR—+I L\SPV (11.17)
XWsr)  Jyg X (V)

The specific entropy is obtained from Eq. 5.136, which has the solution

nWy=ne+ | YO g (11.18)
8 (v

VSR

Finally, we note that the specific internal energy is given by the usual jump

equation

eMW)=er + L pD W) -v). (11.19)

The quantities mr and er appearing in these equations are values of the en-
tropy and specific internal energy in the reference state. A particular example of
the result of this analysis is given in Fig. 11.8.

Isentropes originating at points on the Hugoniot of porous materials are
needed for analysis of decompression wave propagation. These isentropes are
calculated in the same way as was done in Chapt. 5 for a compressible fluid. The
isentrope is related to the Hugoniot for the porous material by the Rankine—
Hugoniot equation

POOW) = pE () + L [y M) ], (11.20)
VSR

where we have adopted the equation y(v) =ysr v/vsr for Griineisen’s coeffi-
cient and where the energy functions are given by
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Figure 11.8. Hugoniots for solid and porous copper.

v

eM()=¢* - I PO, )

v

(11.21)
eM@)=gr +3(vr —v) P (W),

with the + superscripts designating values at the point of intersection of the
isentrope and the Hugoniot. Substitution of Eqs. 11.21 into Eq. 11.20 and differ-
entiation of the result leads to the differential equation

m
) IR )= x(v), (11.22)
dv VSR
where
(1)
@)= TE D) 4 l_xs_R_(_VR___V__) PO 193
2vsr 2 \vsR Vsr dv
The solution of this equation that satisfies the initial condition p™W(v*)= p* is
P =3 )| pt + J- K(v,) . (11.24)
w X V)]

The temperature at points on this isentrope is given by

vt %
oM (v, n*) =6*exp liYSR[ —-———] .
VSR VSR

Some results of this analysis are given in Fig. 11.9,

11.3 Shocks of Moderate Strength: The p—a Theory

The first section of this chapter addressed the response of porous materials of
very low strength and high porosity to loading by weak shocks. In this case, the
shock produces compaction of the porous material but is not strong enough to
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Figure 11.9. Hugoniot and decompression isentropes for copper distended to the state
vr/vsr =1.5.

cause significant compression of the parent matter. The second section ad-
dressed the effect of shocks of such great strength that details of the compaction
process could be ignored and attention focused upon compression and
decompression of the fully compacted material.

Now we consider the more difficult intermediate case in which both com-
paction and compression processes are important and interest is focused upon
partially compacted states. The responses that we shall study have been investi-
gated in considerable detail by theoretical, experimental, and computational
methods, and the results obtained are the subject of a comprehensive, critical
review by Nesterenko [83]. The materials that we shall consider are usually
formed from weakly compacted granules of a ductile metal. The material re-
sponds elastically at very low stresses but yields in response to both pressure
and shear stress when these quantities exceed critical values. In the analysis of
this section we shall assume that the granules of the parent matter slide over one
another freely enough that the macroscopic shear stress can be neglected and we
are left with a theory involving only pressure. As the applied pressure increases
the pressure—volume curve exhibits a discontinuity in slope that we identify as
an elastic limit or pressure yield point. The observed yielding is attributed to the
onset of inelastic compaction produced by rearrangement and plastic deforma-
tion of the granules of parent matter in response to the applied pressure. Beyond
the yield point, the material also responds thermoelastically to the application of
pressure, with this response being partly a decrease in void volume and partly
compression of the parent matter.

The p—o theory that forms the basis of the discussion of this section was
originally developed by Herrmann [54]. Because of the low tensile strength of
these materials, consideration is restricted to states of compression. In this
model the pores are taken into account by expressing the volume of a unit mass
of the porous material as the sum of the volume of the parent solid and the
volume of the voids. At this level of description no account is taken of the size
or shape of individual voids, the distribution of void sizes, or any of the many
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mesoscale features that are apparent upon examination of the structure of typical
materials to which the theory is applied. The objective in developing a model
upon this basis is to take advantage of our knowledge of the thermodynamic
properties of the parent solid when developing a description of the behavior of
the porous material.

Thermoelastic Response. Applications of the p—« model lie primarily in the
low-pressure region because, in most cases, compaction is essentially complete
at a pressure of a few GPa. The state of the partially compacted material is
described in terms of three independent variables: the specific volume, v, the
specific entropy, m, and an additional variable «, called the porosity, defined by
the equation
a=2. (11.25)
Vs
In this equation vs is the specific volume of the parent solid at the prevail-
ing thermodynamic state of the porous body and o can be interpreted as an
internal state variable. It is a trivial but important observation that, at p =0, the
void volume can have any positive value and the specific volume and porosity
of the material stand in the relation o = v/vs that defines the porosity.

In addressing the thermoelastic compaction, we describe the parent solid by
the specific internal energy function

e=gs(vs,m), (11.26)

which serves as a thermodynamic potential for the pressure and temperature
equations of state

2_688("8’ Tl) and 0= aSS(vS’ Tl) i

11.27
Ovs on ¢ )

The basic premise of the p—a theory is that conversion of the parent solid
into a porous material at the same values of vs and 7 is accomplished without
altering its internal energy (thereby neglecting the surface energy, for example).
This means that Eq. 11.26 describes both the parent matter and the porous
material,

To express the equation of state of the porous material in terms of its specific
volume, v, we substitute vs =v /o into Eq. 11.26, obtaining

e=g(v,n, o) =es(v/a,m) (11.28)

as its equation of state. Menikoff [78] has recently modified Eq. 11.28 to include

a term that depends on o, but we do not pursue that theory here. The pressure
equation of state derived from Eq. 11.28, is
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de(v,m o) __ d8s
ov Ovs

Ovs __ 10

v, M, 0) = -
plv,m, ) ov o Ovs
n n

1
= Ps (vs,m), (11.29)

and the temperature equation of state is

doe(v,n,a) des(v/a,m)
on o

In Herrmann’s original development of the p—o model he assumed that the
pressure in the porous material and in its solid portion were the same. Later,
Carroll and Holt [19] suggested that Herrmann’s postulate be replaced with the
modified equation p = ps/a because this equation leads to a better representa-
tion of experimental data. The development leading to Eq. 11.29 provides a
thermodynamic justification for the postulate of Carroll and Holt.

0(v,n,0) = =0(v/a,m). (11.30)

Let us pursue a p—o theory based upon the complete Mie—Griineisen equa-
tion of state for the parent solid. The reference state for the parent solid is taken
to be that for which p=0, vs =vsr , and n=ngr . To simplify the analysis we
assume that ys(vs)/vs =ysr /vsr and Cg (1) =Cgy . These simplifications are
acceptable in view of the modest thermal effects in the range of states over
which we intend to apply the theory. With these restrictions, the specific internal
energy function describing the parent matter is given by Eq. 5.94,

es(vs, M) =er +e{V(vs; R ) +Cg Or xe(vs)[oe(m) =11,  (11.31)
where
Xc(w):exp{iﬁli-(vsg -—vs)} and o.(n)=exp w . (11.32)
VSR Csr

Substitution of Eq. 11.31 into Eq. 11.28 yields the specific internal energy
function

e(v, M, o) = er +&5V (v/ou; Nr ) +Cag OR Yo (V) [w0c (M) -1] (11.33)

for the porous material. The pressure equation of state associated with Eq. 11.33
is

1
P, a)=§[p§“’(v/a;nR)+cR %o [oe(-11] (11.34)
where or =pr Yr Cgg Or . The temperature equation of state is

6(v,m, )=0r Y (v/a) ®c(n), (11.35)

which can be solved to yield the equation
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nv/o,0)=nr +Cg In 9 (11.36)
Or qc(v/o)

for the specific entropy.

Griineisen’s coefficient for the porous material is most conveniently deter-
mined using the thermodynamic derivative

_ v 96(v,n,0)

. 11.37
Or ov ( )

n

From the temperature equation of state, Eq. 11.35, we find that Griineisen’s
coefficient for the porous material is given by

y(v,o)=——. (11.38)

Pressure-induced Yielding. In addition to the thermoelastic response just
discussed, a porous material can respond to applied pressure by undergoing an
inelastic compaction. As with the shear-induced yielding considered in metal
plasticity, this compaction is caused by the applied pressure, but does not con-
tribute to the pressure. When the pressure is removed, only the thermoelastic
contribution to the decrease of specific volume is recovered.

One widely used approach to development of a theory such as we are con-
sidering is to suppose that the response of the porous material is the same as that
of a hollow sphere of the parent matter that has the porosity of the porous
material, and to calculate the response of this hollow sphere to imposition of a
uniform external pressure using the ordinary methods of stress analysis [19,83].
This yields explicit equations relating the specific volume and the porosity of the
sphere to the pressure. The hollow-sphere model predicts yielding, compaction
of the pore and compression of the parent matter when pressure is applied. It
also predicts the response to removal of the pressure. This model is informative
of the issues we face in predicting the response of porous materials, but the
assumed deformation is not at all similar to that experienced by actual porous
materials, as shown by both experimental observations and numerical simula-
tions in which details of the microstructure of the porous body are resolved.

Inelastic compaction occurs when the applied pressure exceeds a critical
value. Boade [13] proposed that the critical pressure can be expressed as a
function of o by the empirical equation

n a-—1
py()=py, —pln( ] (11.39)
[0.2'0) -1
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in which ay, and pvy, are the values of porosity and pressure at which yielding
begins and p is an additional material constant. Polynomial and other forms of
the function py (o) have also been used. Because of our intention to apply the
theory to shock-compression phenomena, we shall identify py, and oy, with
the Hugoniot elastic-limit parameters. When a pressure in excess of py(o) is
applied, the porosity decreases to a value at which the material can support the
applied pressure. Since the equilibrium pressure is entirely of thermoelastic
origin, it is given by Eq. 11.34 or the equivalent equation

p,0,0)= é [ P (o, mr) + 68 [(G/GR)-—xc(v/a)]] (11.40)

obtained when Eq. 11.36 is used to replace the specific entropy by the tempera-
ture. When we equate the pressures given by this equation and by Eq. 11.39 we
obtain the equation

1 o o1
§[p§"><v/a;nR>+cR [0/08)~ 1 (W/)] |= p o —pln(a

. (11.41)
Yo 1
relating v, o, and © in material that is undergoing inelastic compaction. When 6
is specified this becomes an equation relating v and o, and substitution of this

relation into Eq. 11.40 yields an isotherm for compaction of the porous material.

As an example of the foregoing procedure, we consider compaction of the
porous copper material described in Table 14.1. The isotherms a® (v,6%) and
p® (v,0r) that follow from the analysis are shown in Fig. 11.10.

1.4
-1.3
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-1.2
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1.1 1.2 1.3 14 15 1.6

vx104, m3/kg

Figure 11.10. Pressure and porosity isotherms for the porous copper material described
in Table 14.1. The broken line represents the function o(v)=v/vsg , which gives the
values of o for which the pressure vanishes.
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Table 11.1. Characteristics of a porous copper product studied by Boade [13]

Parent matter [77] Porous material

psr =8930kg/m? pr =6430kg/m3

Cg =3940m/s ar =1.389

S =1.489 pHEL =0.135GPa

ysr =1.99 vHEL =1.546 %1074 m3/kg
Cor =392.7J/(kgK) aHEL =1.382

Or =293K p=0394GPa

sr =77,7327/kg gHEL = 77,792 J/kg

The Hugoniot. When Eqs. 11.33 and 11.34 are combined to eliminate w.(n)
we obtain the pressure equation of state in the form

1
pv,m, o) =;[p(s"> v/ nR)+%—S—l;R—[s(v, n o) -eP (v/ o nR)]] . (11.42)
S
Evaluation of this equation at the specific volume v on the Hugoniot yields the
result

TSR

IR [0y —ePw/ane)).  (11.43)
VSR

1
PR =—pPW/anr) +
The functions p®(v) and e (v) are related by the Rankine—Hugoniot
equation
e, o) =L + L[ pE (v, a) + pHEL ] (VL —v), (11.44)

where the HEL quantities are those for the porous material. Substitution of Eq.
11.44 into Eq. 11.43 yields the Hugoniot

1
P*w) ={ —p{P (/05 mr) =2 o v /o)
o OLVSR
| (11.45)
4R |:SHEL +_;_pHEL(vHEL —v)]} { 1—_I8R (VHEL_V)}

OLVSR 2avsr
for the porous material.

It is convenient to choose the reference state so that this Hugoniot is centered
on the HEL. Evaluation of Eq. 11.45 at the HEL gives

1
i [pé") (v§IEL;n§[EL )—.Y_Sllg(s“) (ngL;n?EL )+ I_SB.SHEL} , (11.46)
o VSR VSR
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where viEL = HEL pHEL ©and we are led to choose the isentrope that passes
through this HEL. Therefore, we must have

HEL) HEL

1
HEL pén)( ’nS =p

(11.47)
S(Sﬂ)(véIEL; niEL )= gHEL

Our next task is establishing the specific form of the isentrope. In the general
spirit of this volume, we shall use an isentrope based upon the principal
Hugoniot for the parent matter, Eq. 5.176:

vs

’
POs; L) =y (vs) | pEEL+ J‘ ic—g—,;dv' , (11.48)
HEL ©
vs

where

xc<vs>=exp[ys“ (VEE Vs)]

(11.49)
dp®S)(vs)
Ke(vs) = (B8 (pg) +| 1 - ISR (HBL _y,0) |22LV3)
(vs)= 2 P (){ 2VSR(S 5) s
We shall adopt Eq. 3.12 as the representation of p®™S)(vs), so
2 _
P (g) = (PR CBY Or =) (11.50)
[1-psr S (vsr ~vs)]
The specific internal energy on the isentrope, as given by Eq. 5.132, is
vs
eV (vs,nfE ) = e fEL - j PV D ay (11.51)
HEL

Vs

It is apparent from the equations that these isentropes pass through the HEL.
Equation 11.48 can now be rewritten in the form

vs ,
PO s, L) = yo(vs)| pIEL + J' Xol) el (11.52)
yHEL X (V)

and Eq. 11.51 becomes

vs

eV (vs; nHEL ) = gHEL j PO MELdy (11.53)

HEL
vs
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In applying the foregoing equations one may assume that compression from the
initial state to the Hugoniot elastic limit is isentropic, so that N} =ng .

Our next task is determination of o as a function of v on the Hugoniot. Since
states on the Hugoniot are in equilibrium, the pressure is the same as the critical
pressure for inelastic compaction as given, in this case, by Eq. 11.39. Equating
these two pressures gives the equation

HEL _ 2 a-1 \_J1 o . HELy_ _YSR _(m . HEL
p _pln(aHEL_l)_{ apS (V/a’ns ) (XVSR SS (V/a,ns )
_, (1L54)

+ IR |:8HEL Pl pEELHEL _yy L] o TSR ey |
VSR 2 2avsr

relating o and v on the Hugoniot. It must be solved numerically, but the result is
the Hugoniot o = o™ (v) and, with this, Eq. 11.45 can be evaluated to give
pH (V). Pressure and porosity Hugoniots for the material described in Table
14.1 are illustrated in Fig. 11.11.

4 - 1.4
3 - 1.3
S
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O“ porosity B
R,
2 - 1.2
1 - 11
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| ; | : 7 HEL
0 - I T T T 1.0
11 VR 1.2 13 1.4 1.5 1.6

vx104, m3/kg

Figure 11.11. Pressure and porosity Hugoniots for the material described in Table 14.1.
The curves are derived from the theory presented in this section and the plotted points are
from Boade’s measurements, but with the latter having been re-evaluated (producing only
slight changes) using the theory of this section. The broken line represents the function
o(v)=v/vsr , which gives the values of c(v) for which the pressure vanishes. The steep
dotted lines are decompression isentropes.
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Finally, from Eq. 11.35 we obtain the temperature Hugoniot

0D (v) = O 5o (v/ o) +:)i[oc PO W)= p{P (v /o, nEEL) ] . (11.55)
CSR YsR

and, from Eq. 11.36 we obtain the specific entropy Hugoniot

0 (y)
M y=qtEL £ CY In| —2 1. 11.56
n (V) n SR n (GR Yo (V/(X)) ( )

Example temperature and specific entropy Hugoniots for the material described
in Table 14.1 are illustrated in Fig. 11.12.
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Figure 11.12. Temperature and specific entropy Hugoniots for the material described in
Table 14.1.

The Decompression Isentrope. Decompression processes undergone by
porous materials are very important in many applications, but have been less
thoroughly studied than compression processes. When a ductile or friable porous
material has been fully compacted it seems reasonable to suppose that the loss of
porosity is irrecoverable and that a decompression process will follow the isen-
trope for the parent solid. For many materials, decompression processes from
partially compacted states couldinvolve both expansion of the parent matter and
at least some recovery of the porosity. It is to be expected that the expansion will
proceed along the decompression isentrope from the Hugoniot state §* to a
state $** at which the pressure is zero. The specific entropy of material in the
state §* is determined by evaluating Eq. 11.55 for the temperature 6* on the
Hugoniot and then Eq. 11.56 for the specific entropy, n*, at this point on the
Hugoniot and also on a decompression isentrope. The pressure isentrope can be
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obtained from Eq. 11.34 if an equation analogous to Eq. 11.39 is available to
permit separation of vs =v/o into its factors v and o.. In the absence of such an
equation one can still determine the variables characterizing the state §** . This
is often sufficient because the isentrope is quite steep and can be satisfactorily
approximated by a straight line connecting the states §* and §*+.

Let us consider determination of the state §** in which p=p*™ =0 and
n=n"=n*". Evaluation of Eq. 11.34 at this state gives

PVt MR) +OR X ) [0c (M) —-1]1=0, (1157

which can be solved for v{* . With this information in hand, Eq. 11.33 can be
evaluated to yield the value ¢**. We shall now consider a shock transition from
$** to §* in the approximation that the shock is weak enough that the
Hugoniot centered on s** can be identified with the decompression isentrope
that we seck. The jump conditions of interest are

(pSR US)Z (v++ —V+)= p+

(11.58)
%P+ (v++ —V+) =gt —gtt.
These equations can be rewritten in the forms
+ ot
prr oy 4 2E ) (11.59)
p+
and
+32
Uz = 20 (11.60)

T 2ph (et —st)

from which we can calculate v** and the velocity, Us, of the decompression
wave. Several decompression isentropes are shown on the graph of Fig. 11.11.
When, as in the present example, the decompression path is much steeper than
the Hugoniot a decompression wave will overtake the shock very rapidly, which
causes much more rapid attenuation than is the case with shocks in non-porous
materials. One application of porous materials involves placing them in a layer
over a structure in order to attenuate stress pulses that might otherwise cause
spallation of the structural material.

As noted previously, decompression of porous solids has been less thor-
oughly investigated experimentally than have compression processes. Because
the present example is calculated upon the basis of Boade’s experimental
investigation, it is important to mention that his decompression measurements
indicate a process that follows more closely along the Hugoniot than do the
curves calculated here. It may be that the best way to determine decompression
paths of porous materials is through pulse-attenuation measurements.
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Steady Compaction Waveforms. Shocks introduced into porous materials
usually evolve toward structured waves, which may become steady. The thick-
ness of these waves depends upon the time required for the pores to close that, in
turn, depends upon both the pressure and the dimension of the pores. The shock
thickness is often significant in comparison to propagation distances of interest
and cannot be ignored. To capture this phenomenon it is necessary to develop an
equation that describes the evolution of the porosity toward equilibrium. Analy-
sis of evolving waveforms requires use of numerical methods for solving the
partial differential equations of conservation of mass, momentum, and energy in
conjunction with constitutive equations such as we have considered in previous
parts of this section and an evolutionary equation for the porosity. Nevertheless,
it is informative to study the structure of steady waveforms as we did in the case
of elastic—viscoplastic waves. In a steady wave propagating in the +X direction,
the dependent variables are all functions of the single independent variable

Z=X-Ust. (11.61)

The conservation equations 2.124 expressing the pressure, particle velocity, and
specific internal energy as functions of v(Z) can be written

p(Z) = p™ +(pr Us) 2 [vFEL —v(2)]
%(Z)=xHEL 4 pp Us [VEL —v(2)] (11.62)

6(Z) =6 + pHL (VL —y(Z)]+ L (pr Us)? [V ~v(2)]2.

The specific internal energy, pressure and temperature equations of state
have been given in the previous paragraphs. To complete the constitutive de-
scription of the material we must adopt an evolutionary equation for the poros-
ity. We shall consider the simplest equation that might prove effective,

Gmo 2Tt (11.63)
T

where the material constant, 7, is a characteristic compaction time. According to
this equation, o approaches its equilibrium value, oeq(v, 1), at a rate that is
proportional to the difference between its current and equilibrium values. As we
know, and can see from Eq. 11.62,, the state point for a specific material particle
moves along the Rayleigh line as the steady wave passes over the particle.
Therefore, we need to determine values of o and oeq(v, M) as functions of the
independent variable Z that characterizes points on the Rayleigh line. For a
steady structured shock, the equilibrium compaction is o (v) and the current
value of o is the value of this variable on the Rayleigh line at the same specific
volume, a(®)(v).

Let us consider determination of the function o(®)(v). We have defined a
Hugoniot curve as the locus of states that can be reached by a shock transition
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from a given initial state. As we consider steady waves we are led to alter this
definition to say that a Hugoniot curve is the locus of states reached in a steady
wave transition from the given initial state. Since the transition from the initial
state to any state in a steady waveform satisfies the same equations as a shock
transition to the state in question, we see that a steady compression process can
be interpreted as a sequence of transitions from the initial state to states on
members of a family of Hugoniots with each member of the family being char-
acterized by a fixed value of o.. These are called constant-porosity Hugoniots.
Each of these Hugoniots is given by Eq. 11.45 when the latter is evaluated for
the constant value of o characterizing the Hugoniot. A graph of several of these
Hugoniots is given in Fig. 11.13.

Rayleigh lines are represented by Eq. 11.62,. The values of o and v corre-
sponding to points of intersection of the constant-porosity Hugoniots with the
Rayleigh line form the function a®)(v). This function has been calculated
numerically for the Rayleigh lines shown in Fig. 11.13. In these cases a(®)(v)
is very nearly a linear function as v ranges from vHEL to its value at the inter-
section of the Rayleigh line and the equilibrium Hugoniot. For the calculations
to be presented, the linear approximation to o(®)(v) has been used.
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Figure 11.13. Partial-compaction and equilibrium Hugoniot curves for the material
described in Table 14.1. Each of the steep curves is a constant-porosity Hugoniot for the

value of a shown near the curve. Also shown is the equilibrium Hugoniot and Rayleigh
lines for several steady waves.

In the steady wave, i.c., along ® , we have

do_da®@) dv

(11.64)
dZ dv  dz
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and, since & =~Usda/dZ , Eq. 11.63 becomes

dv  a®W)-a @)

dZ  Ust[do®w)/dv]

This equation is immediately integrable to yield the solution

Z_J‘ a® ) —a®(v)
© ) Ust[do®()/dv]

dv + const. ,

(11.65)

(11.66)

where the integration is performed numerically and the constant of integration is
chosen to place the half-amplitude point near Z = 0. When the function v(Z)
given by Eq. 11.66 is substituted into Eqs. 11.62 we obtain pressure, particle
velocity, and specific internal energy waveforms. Three pressure waveforms
calculated in this way are illustrated in Fig. 11.14. A noteworthy feature of these
waveforms is the slow initial rise followed by a much more rapid rise of the
higher amplitude portion of the waveform. This is a consequence of the fact that
the Hugoniot rises slowly until compaction is nearly complete and then rises
much more rapidly, leading to a large difference between a®(v) and o™ (v)

for values of v near full compaction.
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Figure 11.14. Steady waveforms calculated for the material described in Table 14.1.



CHAPTER 12

Spall Fracture

Solids fracture when subjected to tensile stress of sufficient magnitude. When
this stress is produced as a result of the interaction of shocks it is usually of large
magnitude and short duration, leading to formation of a diffuse distribution of
microcracks or voids in the interior of a material body. This process is called
spall fracture or spallation. Complete fracture results from coalescence of
individual microfractures to form a plane of separation spanning the body.

From the time of the earliest observations of spall phenomena, investigators
have been interested in its manifestations at the microscale. Although all levels
of damage are of interest, the most revealing scientific information is obtained
from samples exhibiting very low levels of damage. Material samples that have
been recovered after being subjected to a spall test are sectioned to reveal the
damage and permit description of its morphology. In some materials, described
as brittle, the damage takes the form of a distribution of planar cracks. Damage
in materials described as ductile takes the form of a distribution of rounded
voids. In most materials the morphology is distinctly in the form of cracks or
voids when the damage level is quite low. Some materials exhibit damage
morphology that is intermediate between that of sharply defined cracks and
nearly-spherical voids, and the distinction is further moderated at larger damage
levels when crack opening becomes pronounced and voids coalesce into irregu-
lar arrays that resemble cracks. Microscopic observations occasionally disclose
the site at which the damage was initiated and the mechanism by which it
evolved. An understanding of the microscopic mechanisms underlying the spall
process is essential to selection of materials that have desirable spall behavior
and helpful to development of mathematical models of damage accumulation
leading to spall. Many photomicrographs of cross sections of spall-damaged
materials are included in [4,31].

The simplest case in which a wave interaction leads to fracture occurs when
two sufficiently strong plane decompression waves collide to produce a region
of tensile stress in the interior of a material body. Levels of spall damage caused
by this tensile stress field range from formation of a few isolated microfractures
to complete separation of a layer of material from the remainder of the body.
Experimental investigations show that a damage distribution develops gradually
through processes of nucleation of individual defects (or activation of existing
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defects) followed by growth of these microfractures. In the later stages of the
process, individual microfractures coalesce to form larger fractures. Experiments
can be configured so that the damage accumulation process is arrested at any
stage of its evolution.

Because of the high intensity and short duration of tensile stress application
associated with spall phenomena the damage produced begins with nucleation of
cracks or voids in concentrations of the order of 10*/mm’ and average volume
of the order of 10 mm’®, leading to void fractions of the order of 0.01. The
damage then increases through growth of the nucleate microfractures to form
damage distributions having void fractions exceeding 0.1. The void fraction is
often adopted as a quantitative measure of damage, but other quantities such as
the decrease in material strength have also been used. There is an extensive
metallurgical literature describing the morphology and statistical properties of
the damage distribution [4,30,81].

Early investigations of spall fracture addressed development of a spall crite-
rion, i.e., a mathematical rule for deciding whether or not a material body will
fracture under given conditions of stress, strain, temperature, and other contin-
uum field variables. It is implicit in the concept of a spall criterion that spalla-
tion is a discrete event that either does, or does not, occur. Some specific level of
damage is identified as that constituting a spall and the criterion provides the
means to determine whether or not the material spalled. Modern theories of
failure are based on the observation that damage develops gradually by a process
of nucleation, growth, and coalescence of microfractures distributed within the
volume of the material. Continuum theories have been developed to explain the
process of damage evolution observed in shock-wave experiments. These
theories take into account the effect of the evolving damage on the mechanical
properties of the material and, thus, on the stress field that drives the spall
process. The conventional concept of spall as a discrete phenomenon described
by a criterion for its occurrence has been supplanted by the newer concept of
continuous damage accumulation described by evolutionary equations, but the
ideas and language of the discrete model are still in widespread use and spall
criteria are adequate for solution of many practical problems.

There is an extensive literature on dynamic fracture and fragmentation.
Books on the subject include [4,31,49,63,81,87].

12.1 Experimental Means of Producing Spall Fracture

In this section we briefly describe some situations in which spall fracture can
occur. Practical solution of spall problems is almost always achieved through
numerical simulation, but consideration of idealized situations that admit simple
analytical solution provides the essential background for understanding the
wave-propagation phenomena that result in spall fracture. The discussion of this
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section is carried out in the context of complete spall described by a critical
normal stress criterion.

12.1.1 Plate-impact Experiment

In an experimental arrangement commonly used to study spallation, a projectile
plate of thickness Lp is impacted on a target plate of the same material that has
thickness L, greater than Lp, as shown in Fig. 12.1.

.‘fp =0 I
s, F
3
| <
0 0 I3
|2
o |3
projectile - target o
plate plate | §

i

SRR | M

Figure 12.1. Plate-impact configuration for conducting a spall experiment. Note that this
schematic greatly exaggerates the thickness of the plates relative to their lateral extent.

l

Spallation Due to Colliding Decompression Shocks. For the present discus-
sion, let us suppose that the material is characterized by a simple normal
Hugoniot and that the decompression wave can be approximated by a shock, as
was done in Chap. 3. The interactions of interest have been analyzed in
Sect. 3.7.3 and are illustrated in Figs. 12.2 and 12.3. The impact, at the velocity
xp , produces a compressive stress accelerating the material to the right of the
impact interface to the velocity xp/2 and decelerating the material to the left of
the interface to this same velocity (see Fig. 12.2a). When the left-propagating
compression wave reaches the unrestrained surface of the impactor plate it is
reflected, leaving behind it a region (region 2) that is at rest in a state in which
t1 =0. This decompression wave passes through the impact interface without
interaction since the impactor and target plates are of the same material and no
tension is present to cause separation at the interface. Meanwhile, the right-
propagating compression wave reflects from the back surface of the target plate,
accelerating the material near this surface to the velocity xp (see Fig. 12.2b).

The critical event occurs when the converging decompression waves meet.
Since the material in region 3 is moving to the right, whereas the material in
region 2 is at rest, the material will tend to separate. This tendency is resisted by
tensile stress that develops at the plane of the interaction (see Fig. 12.2¢). It is
possible that this tension is sufficient to cause spallation, in which case the fract-
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Figure 12.2. Wave interactions and spall formation resulting from collision of an
impactor plate with a thicker target plate. (a) At the time of impact shocks propagate from
the impact interface into each of the plates. (b) These shocks reflect from the unrestrained
surfaces and the reflected shocks collide in the interior of the target plate. (¢) In the
region between the two waves arising from this latter interaction the material is in a state
of tension. If this tension is great enough, fracture occurs. In drawing the figure it was
supposed that the fracture occurred following a brief incubation period. Part (d) of the
figure shows the fractured target plate.

ure will occur at the plane on which the tensile stress first appears. This plane,
called the candidate spall plane, lies at a distance to the left of the back surface
of the target that is equal to the thickness of the impactor (Fig. 12.2d shows the
state of the assembly after spallation). Figure 12.3 is drawn on the premise that
the tension produced in the target plate is insufficient to cause spallation, and
shows several wave interactions following the original tensile excursion. In this
case, tension is present on the candidate spall plane for the time required for one
shock reverberation in the impactor plate, with its application being terminated
by arrival of the stress-relief wave producing region 5 of the X—¢ plane. If
spallation is to occur, it must do so within the brief time interval during which
the material is in tension (state 4).

Experimental observation shows that spallation does not occur instantane-
ously upon application of tension in excess of the spall strength. A case in which
spallation occurs after a brief incubation period is illustrated in the diagrams of
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Figure 12.3. Diagrams illustrating (a) the Xt trajectories of shocks and (b) the #1;—*
states achieved in a spall experiment conducted below the fracture threshold. The history
of the free-surface velocity of the target is shown in part (c) of the figure and the stress
history at the candidate spall plane is shown in part (d) of the figure.

Fig. 12.4. Region 4 develops during the delay between decompression wave
collision and spallation. When the spall occurs the material separates and re-
compression waves originate at the spall plane, leading to formation of regions 5
and 6 in the target. Several additional wave interactions occur, as illustrated in
the figure. Figure 12.4d shows the stress history at the spall plane, including
both the compression phase and the tension prevailing before spallation. The
drop in free-surface velocity that occurs when the left boundary of the tensile
region reaches the back surface of the target is called a pull-back signal. The
maximum duration of the part of the free-surface velocity history that is associ-
ated with region 5 is (2Lt —Lp)/Cs, where Cs is the shock speed. When the
free-surface velocity is zero for this amount of time it indicates that spallation
did not occur. Examination of the free-surface velocity history illustrated in
Fig. 12.4¢ shows that the time interval between the pull-back signal and arrival
of the recompression wave is much less than was the case when spallation did
not occur. This is because the recompression wave originates at the spall plane
rather than the impact interface, and thus travels a smaller distance.
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Figure 12.4. The process illustrated in this figure is the same as in Fig. 12.3 except that
spallation occurs at the candidate spall plane after the material has been under tension for
a brief interval. (a) X—¢ diagram. (b) #;1—x Hugoniots. (c) particle velocity history at the
back surface of the target plate. (d) Stress history at the spall plane. The decrease in the
duration of region 5 on the free-surface velocity history graph of this figure from that on
the graph of Fig. 12.3 is an indication that spall occurred in the present case.

Spallation Due to Colliding Simple Decompression Waves. In Sect. 9.6 we
considered a plate-impact problem rather like the one just discussed, except that
the interacting decompression waves were analyzed as centered simple waves
rather than being approximated by shocks. The X—¢ diagram for this problem,
drawn on the premise that fracture did not occur, was presented in Fig. 9.19.
Stress histories showing the gradual development of tension on planes Xa,
Xc, and Xp are shown in Fig. 9.20. The maximum tension arising in this
example is 9.1 GPa, a value well in excess of the reported 2.4 GPa spall strength
of uranium. In order to extend the analysis of Sect. 9.6 to capture the effect of
spallation we begin by assuming that a complete spall forms instantaneously
when the tension at some plane reaches the critical value. Examination of the
solution given in Sect. 9.6 shows that any given level of tension between zero
and the maximum value achieved is first attained at a point on the characteristic
CD. From the solution given previously, we find that the critical value
p=-0s=-24GPa isattained at X = X5 =591mm and t=¢s=4.95pus.
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At this time the material spalls and recompression shocks form and propa-
gate in both directions from the spall plane. The material behind each of these
shocks is recompressed to the state of zero pressure on the Hugoniot centered on
the isentrope at the pressure p = —os. The next step is to determine the trajec-
tory and strength of the right-propagating recompression shock. We shall restrict
attention to this shock because our objective is to calculate the effect of the spall
formation on the velocity history of the back surface of the target plate. For this
analysis we shall adopt the weak-shock approximation in which the Hugoniot
and isentrope coincide. The X—¢ diagram for this case is given in Fig. 12.5.
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Figure 12.5. The X—¢ diagram of Fig. 9.19, modified for the effect of spallation at the
time, 7, and plane, X, at which the tension first exceeds the spall strength o5 = 2.4 GPa.

Let us describe the recompression shock trajectory parametrically by the
equations

X =Xs(A) and t=ts(A). az.n

The ray characteristics in the right-propagating simple wave emanating from the
interaction zone are given by

X —Xcp(A)=CL(A)[t—tcp(A)], (12.2)

where we are interested only in the range As < A < A® _ The functions Xcp(A)
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and fcp(A) , which form a parametric representation of the curve CD are known
from the numerical analysis of the interaction region.

On the shock trajectory we have

dXs =Us(A)dts, (12.3)
or
dXs(A) _ dts(A)
——-——-—-—-—dA = Us(A)———dA . (12.4)

From the shock-jump conditions we have

Uslal=[]
o= Usl]=[p]. (123

SO

pr [A]

The pressure behind the shock is zero and, since we are approximating the
Hugoniot by the isentrope, the compression is A® . Therefore, we have

U = _p(n)(A)

vz - L 1ol (12.6)

= 127
5 PR (A(z) _ A) ( )
We also have the usual equation
) 172
CL(A) = 1.4 (12.8)
pr  dA

for the soundspeed, where the isentrope is the one passing through the point p*,
A" on the Hugoniot. When y(v)/v =yr /vr this isentrope is given by

B oA
PW(A) = 1o(A)] p + j MdA' , (12.9)
A+ e )
with
Aeo(A) =exp [yr(A - AY)]
(12.10)
(o0& 4P _1r
Kc(A)——(l 5 AJ — P

When the Hugoniot is given by
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2
2(a) =_(§’1i gBA ?2 (12.11)
we have
2
KC(A)=(—1‘)_3§-§F[1+(S—YR)A], (12.12)
and
1 1/2
CL(A) = {p_[ PMW(A) +xc(A) ]}
R
(12.13)
dCL(d) _ 1 P Kc(A)}
A 2pRCL(A){YRP"(A)*'YRKc(A)+ TRk
with
dx(4) _ prC3 [35+(S-yr)1+2SA)]. (12.14)

dA  (1-SA)*

At points on the shock trajectory the pressure, compression, and particle ve-
locity have the values associated with the ray characteristic intersecting it at that
point. Evaluation of Eq. 12.2 at points on the shock trajectory yields the resuit

Xs(A)~Xcp(A) = CL(A)[5s(A) — tep(A)], (12.15)
and differentiation of this equation gives

dXs(A) dXcp(d) L(A)

=[ts(A) = teo (M) —/——

dA dA
(12.16)
+CL(A) dts(A) 3 dicp(A) .
dA dA
Substitution of Eq. 12.3 into this result gives
dts(A
D 4 058 =w®), 1219
where

®(A) = ! dCid) (12.18)

CL(A)-Us(a) da

and
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d Xcp(A) ~CL(A) dtcp(A) ~ ten(A) dCL(A)
w(A) = a8 da da , (12.19)
Us(A) - CL(A)

where we have used Eq. 12.4 to eliminate d Xs/dA . Equation 12.17 is the
familiar linear first-order ordinary differential equation and its solution for
ts(A) is easily reduced to quadrature. When this has been done, the function
Xs(A) can be obtained from Eq. 12.15.

A practical problem is calculation of the derivatives d Xcp(A)/dA and
dtcn(A)/dA . This is best accomplished by analytical differentiation of a
function fit to the values of Xcp(A) and fcp(A) that were calculated numeri-
cally. These functions can be fit quite accurately by the polynomials

Xe-X
Xcp(A) =X +C(A-Ar)(A-Ap)+=>—22(A-Ap)
Ac - Ap
(12.20)

fc—Ip

iCD(A)=[D+D(A—Ac)(A-—AD)+A (A-Ap),

c—Ap

where C and D are adjustable coefficients. For the example at hand an adequate

fit is obtained using C =0.024 and D =1.86. The derivatives of these functions
are

dXcp(A) _ Xe—-Xp

dA Ac —Ap

~C(Ar - Ap) +2CA

(12.21)
dtCD(A) _ fc—1H

dA —Ac—AD

—D(Ar - Ap) +2DA.

With all of the foregoing results, the shock trajectory and strength at points
within the transmitted simple wave are readily calculated by integrating Eq.
12.17. 1t should be noted that it is difficult to achieve high accuracy in the
foregoing calculation because the shock trajectory and the characteristic curves
have almost the same slope, so calculation of the intersection is subject to sig-
nificant uncertainty.

Calculation of the extension of the shock trajectory through the reflection
region is more complicated, but this can also be done numerically. Because the
portion of the shock trajectory that lies within this region is so short, great
accuracy is not required, and we shall omit details of the calculation. For our
purpose, the important result is the time at which the trajectory intersects the
boundary of the target plate. For the example under discussion this is = 6.625 ps.

An important result of the foregoing calculation is the particle-velocity his-
tory of the back surface of the target plate. This function can be measured with
great accuracy in spall experiments, and permits one to determine whether or not
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a spall formed in a given experiment and, if a spall formed, to estimate the spall
stress. These data frequently provide the most important means of evaluating the
accuracy of numerical simulations of the process.

500
422 N

0 . l — .

2 4 6 8 us 10
Figure 12.6. Velocity history of the unrestrained back surface of the target plate for the
example problem. The solid line is the result of the analysis for the case in which spall
occurs as illustrated in Fig. 12.5 and the dotted extension of the curve is the path that
would have been followed had spall not occurred. The dip in the solid curve, called a
pullback signal, is the indication that spall occurred.

Spallation Due to Colliding Elastic—Plastic Decompression Waves. In Sect.
10.1.7. we considered the problem of impact of steel plates using a small-
deformation theory of elastoplastic material response. As in the case of elastic
plates, wave reflections lead to colliding decompression waves and development
of a region of tensile stress in the interior of the thicker plate. In the example
considered the maximum tensile stress reached almost 4 GPa, a value sufficient
to cause spallation in many steels. As shown in Fig. 10.22, a time interval of
approximately 0.5 us is required for development of this tension. When it is
assumed that spallation occurs instantaneously, but after a brief incubation
period, when the tensile stress reaches 3 GPa and the analysis is carried beyond
the time at which the spall forms the results presented in Figs. 12.7 and 12.8 are
obtained.

12.1.2. Explosive Loading Experiment

Plane spalls can be produced by means other than plate impact. One important
case is spallation produced when an explosive charge is detonated in contact
with a material sample. The difference between the plate-impact experiment
discussed in the previous section and an explosive loading experiment is that the
former introduces a flat-topped compression pulse into the target whereas the
latter produces a pulse in which the compression rises suddenly to a peak and
immediately begins a gradual fall. The peak compressive stress produced by ex-
plosive loading is almost always far in excess of the spall strength. Detailed sol-
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Figure 12.7. Stress history at X'=9.96 mm (the plane at which tension exceeding 3 GPa
first appears) showing the gradual increase in tension that occurs before a spall forms.
This analysis is a continuation to times after spallation of the calculation presented in
Sect. 10.1.7.

250

200 ~

ATE

Figure 12.8. Free-surface velocity history resulting from a collision of elastic—plastic
steel plates. The impactor plate is 5 mm thick and moving at a velocity of 230 m/s. The
stationary target plate is 10 mm thick. This analysis is a continuation of the wave-propa-
gation calculation presented in Sect. 7.7 and is conducted on the premise that a complete

spall forms instantaneously, but after a short incubation period, when the tensile stress
exceeds 3 GPa..

ution of the explosive loading problem can only be accomplished by numerical
means, but the basic issues are casily illustrated by a simple graphical analysis
of the interaction of a triangular pulse with an unrestrained surface of a body ex-
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hibiting a linear elastic response. Triangular compression pulses can also arise in
plate-impact experiments in which the propagation distance is sufficient for the
occurrence of attenuation, as discussed in Sect. 9.5.2.

The graphical solution for the linear interaction of a triangular wave with an
unrestrained surface is illustrated in Fig. 12.9. This figure shows the wave
within the plate moving toward the right and the virtual wave moving toward the
left, initially outside the plate, but eventually entering the material. As discussed
previously, the compression pulse incident on the unrestrained surface of the
plate is reflected as a tensile pulse. The beginning of the reflection process is
shown in Fig. 12.9¢ and continues in Fig. 12.9d. The illustration is made for the
case that the spall strength is o5, as shown in the figure. When the reflection
process has reached the stage that the peak tension attains this value, the plate
spalls at the plane where the criterion is first satisfied, and a layer of material
flies away to the right. When this occurs, a new unrestrained surface is formed
and what is left of the right-propagating triangular pulse reflects from this
surface in just the same way that the original reflection occurred. The first stage
of this process is shown in Fig. 12.9¢. Since the peak compressive stress in the
portion of the incident wave remaining after formation of the first spall exceeds
the spall strength, a second spall will form when the peak tension in the reflected
pulse again reaches the spall strength, as shown in Fig. 12.9f. For the case at

Figure 12.9. Graphical solution of reflection of a triangular pulse from an unrestrained
boundary, illustrating the production of multiple spalls.
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hand, the remaining compressive pulse is too weak to cause further spallation,
but a stronger pulse could produce more spalls. Formation of multiple spalls is
characteristic of explosive loading, but occurs in other cases as well.

Stress histories produced by reflection of a triangular compression wave are
illustrated in Fig. 12.10. As can be seen from the figure, the peak tension at any
given plane, X, is produced in an instantaneous transition from a compressed or
unstrained state. At planes that are closer to the unrestrained surface than one-
half of the length of the initial triangular pulse the peak tensile stress attained is
less than the full pulse amplitude, but this stress is sustained for a finite time
interval that decreases with increasing distance from the surface. The maximum
tension is largest on planes for which the duration of its application is least.
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Figure 12.10. Stress histories at various planes in a plate in which a falling triangular
compression pulse of length X, that is propagating in the +X direction at the velocity
Co is being reflected from an unrestrained surface beginning at = 0.
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Flat-topped compression pulses evolve to a triangular form at sufficiently
large propagation distances (see Fig. 9.18). In this regime they are reflected
from an unrestrained surface in the same way as triangular pulses introduced by
explosives, and can cause spallation as discussed above.

12.1.3 Pulsed-radiation Absorption Experiment

An interesting case arises when we consider evolution of the thermal stress field
produced by absorption of a burst of radiant energy, as when a plate of stained
glass is exposed to a laser pulse. In this section we restrict attention to the simple
case in which a modest amount of energy is instantaneously deposited in accor-
dance with Lambert’s law of absorption. In this case, the initial energy density
distribution is an exponential function that decays with distance into the plate:

g=goexp(—kX),

as illustrated in Fig, 12.11. In the foregoing equation £ is the optical absorption
coefficient of the material.

o

X

Figure 12.11. Energy deposited into a body when its surface is uniformly illuminated by
a brief laser pulse. The compressive thermal stress distribution that results is, in linear
approximation, of the same form.

When this problem is analyzed using the linear theory of thermoelasticity
one finds that the compressive thermal stress at the instant following the
deposition is

YR
mnx,0) VR (X, 0).
The disturbance produced by an initial stress state takes the form of left- and
right-propagating pulses each having the form of the initial stress distribution
but of one-half the amplitude of this distribution. Since the region of the initial
stress distribution is adjacent to an unrestrained boundary, the interaction with
this boundary must also be taken into account. This is done by adding to the two
pulses already mentioned a right-propagating virtual pulse that ensures satisfac-
tion of the boundary condition. These three pulses are shown (after propagating
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a short distance) in Fig. 12.12a. The solution to the problem at a given time is
the sum of these three pulses as they exist at that time, and is shown in
Fig. 12.12b. This figure shows that a region of tension has developed near the
front face of the plate. As the solution evolves the peak tension rises until it
reaches one-half the value of the peak compression in the initial thermal stress
distribution. If this value exceeds the spall strength, a front-surface spall will
form. As with the explosive loading example, multiple spalls occur when the
initial compressive stress is sufficiently large. The stress histories at various
planes within the material are shown in Fig. 12.13.

—t11
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Figure 12.12 Linear thermoelastic analysis of stress distributions that arise in an
experiment in which a short pulse of radiant energy is deposited into an absorbing
material.
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Figure 12.13 Stress history at several planes in a material halfspace subjected to rapid
deposition of radiant energy. The position, X / X, to which a curve applies is that of the
Zero crossing.
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12.2 Criteria for Spall-damage Accumulation

Detailed experimental observations have shown that cracks or voids are nucle-
ated (or existing defects activated) at a critical level of tension that may depend
on temperature and is characteristic of the material being studied. Often the
critical stress for nucleation of microcracks or voids is equal to the fracture
stress measured in quasistatic tests. Once nucleated, a crack or void grows at a
finite rate that depends on the thermomechanical state as well as material pa-
rameters. In the following sections we shall discuss equations that model this
process.

12.2.1 Simple Damage-accumulation Criteria

When spallation (however defined) is assumed to occur at a critical value of the
tensile stress, this critical value is called the spall strength. The criterion just
cited, called the critical normal stress criterion, can be expressed by the equa-
tion

1 =o0s, (12.22)

where os >0, the spall strength, is a constant (or a function of temperature) that
is regarded as a material property. It is implicit in the statement of this criterion
that spallation is assumed to occur instantancously. The critical stress criterion,
although useful as a guide, is not consistent with detailed experimental observa-
tions. It has long been known, for example, that the amount of tension that a
material can withstand increases as the duration of its application decreases.
When sections of material samples that have been subjected to a given tensile
stress for varying amounts of time are examined it is clear that increased levels
of damage are produced when the stress is imposed for longer times. If we
assume that damage, 9, accumulates at a constant rate that depends on the
applied stress, then

Do

DX, H= =) R

(12.23)

where @y is a material constant and t(#11) is the characteristic time for damage
accumulation in the material when the stress is ;. If the stress history at the
point X is known, Eq. 12.23 can be integrated to yield the damage history

t ,
DX, 1) = Do J' at (12.24)

L T(t(X, 1))

at this point. A special case of this equation is the criterion of Tuler and Butcher,
in which t(f11) varies inversely with the A power of the excess of the tensile
stress over a threshold oo : T(f11) =To [(fu —00) +|f11 =60 ) /(200)] ™ so that
Eq. 12.24 takes the form
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dr'. (12.25)

To 200

a(x,n=2 Jﬂ [t“(X’t')_G" X, 1) -0 |
The function t(f11) used in this equation has been constructed so as to remove
from consideration the part of the stress history that lies below the tension
threshold for damage accumulation. As this criterion has normally been applied,
the integral evaluated for each value of X using calculated stress histories and a
specific level of damage (i.e. value of @) is selected as characteristic of a spall.

The criterion of Eq. 12.25 is an example of what we may call simple dam-
age-accumulation criteria. Within this class of criteria damage accumulates
linearly in time at a given level of tension but at a rate that increases with an
increase of tension beyond the threshold level. The stress history is calculated
without regard to any damage that may have accumulated and the process of
damage accumulation is assumed to proceed independently of any previously
accumulated damage. The development of modern theories of damage accu-
mulation is motivated by the need to remove these latter two restrictions.

12.2.2 Compound Damage-accumulation Criteria

When a material sample has been weakened by some accumulation of damage,
it has been found that additional damage accumulates at a higher rate even if the
tension is maintained constant. This means that & depends on both the stress t
and 2 itself:

D=0 (t,D). (12.26)

It is interesting to consider this equation in the special case that the dependence
on 2 is linear. This can be interpreted as an exact relation or as a low-damage
approximation to a more general equation. In either case, we have

D=po(t)+P1(1) D . (12.27)

When the stress is held constant, t=t*, the solution of Eq. 12.27 is
Qo(t”)
() =———|exp(p:1(t*)1)-1],

a damage-accumulation history quite different from the constant rate of accu-
mulation of the simple damage-accumulation equations.

Example: The SRI International Nucleation and Growth Model. Equation
12.27 is of the same form as one inferred from experimental measurements of
rates of nucleation and growth of voids in ductile metals [4, Chap. 7]. It was
found that the voids in material specimens that had experienced a low level of
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spall damage were distributed in size (measured by the radius, R) according to
the equation

N =Noexp(-R/R1), (12.28)

where %y is the total number of voids in a unit reference-state volume of
material, % is the number of these voids having a radius greater than R, and R,
is a characteristic size. Integration of this distribution gives the total void frac-
tion (volume of void space in a unit reference-state volume of material) of these
No voids as

V=8 NoR?. (12.29)

The experiments also showed that the radius, R, of each of the %, voids grew at
a rate proportional to its current value, with the proportionality factor being a
function of the pressure (since the voids are observed to be spherical, it is
reasonable to assume that their growth is controlled by the spherical component
of the stress):

R=fs(p)R, (12.30)
where

|p-ps|-(p-ps)

Sa(p)= -

(12.31)

with pg <0 . This means that the characteristic radius R, also grows at this rate:
Ri=fa(p)Rr. (12.32)

The void fraction associated with the %, voids, given by Eq. 12.29, grows at
the rate

Vs =8nNo3R? R =3 fa(p)V . (12.33)

There is an additional contribution to the increase of void fraction that arises
from nucleation of new voids. The sizes of these voids were assumed to be
distributed in the same way as the existing %o voids, except that the character-
istic radius had the constant value Ry. The AN voids nucleated in the time
increment Af contribute the increment A7y to the void fraction, where

AVN =8TANRE . (12.34)
Since this increment of void fraction accumulated in the time interval Atf, we
have

. . AVn . AW .
=1 =8 R3 lim — =8 R3N. 12.35
Yy = lim =2 =8n Ry, lim —=- =8 Ry W (12.35)
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The experimental results showed that voids were nucleated in a unit reference-
state volume of material at the rate

m’r:cN[exp['p—pN |'(”_pN)]—1}. (12.36)
2p1

When the rate equation for the growth of existing voids, Eq. 12.33, is
combined with that for growth of void fraction due to nucleation of new voids,
Eq. 12.36, we obtain the evolutionary equation

V =Vy +Vs =8nR3 N(p) +3 [ (p)V (12.37)

for the void fraction. In this equation, %(p) is given by Eq. 12.36 and fG(p)
is given by Eq. 12.31. If we identify 7/ with the damage % of Eq. 12.27 we see
that Eq. 12.37 is a special case of Eq. 12.27.

Damage-accumulation criteria similar to the one just described have also
been developed for cracking of brittle materials [4, Sect. 7.2].

12.3 Continuum Theory of Deformation and Damage
Accumulation

In the range of stress, strain rate, temperature, etc. encountered in the study of
spall phenomena, undamaged ductile materials are usually described by theories
of viscoplasticity that are valid for finite deformations. As noted previously,
damage accumulated in a material can be expected to affect its continuum-
mechanical properties and, therefore, the process by which further damage
accumulates. A comprehensive theory of spallation must account for this inter-
action of the wave-propagation and damage-accumulation processes. Several
theories that do this have been developed and shown to yield results that are in
good agreement with experimental observations [4,36,37,41,69]. Compound
damage-accumulation equations of the class discussed in the preceding section
comprise an important part of the theory that we seck. The applications that
motivate the development of this section involve avoidance of significant spall
damage to structures, so we shall limit our attention to low levels of damage.

Usually, a process leading to spall fracture begins with a compression wave
propagating in undamaged material. This part of the problem is one of elastic—
viscoplastic wave propagation that can be analyzed using the theory presented in
Sect. 7.3, so the remainder of this section addresses the response of a ductile
material as a low level of spall damage accumulates.
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Kinematics. To extend the theory of Sect. 7.3 to include effects of spall
dilatation we incorporate a contribution F¢ into the decomposition 7.54, which
then becomes

F=F¢F¢FP. (12.38)
As before, the plastic flow is taken to be isochoric, so that
detFP =1, (12.39)

Because the voids produced during spallation of ductile materials are essentially
spherical, we take the deformation that accompanies void formation to be an
isotropic dilatation, in which case F¢ has the form

Fé=F41. (12.40)
The velocity gradient associated with Eq. 12.38 is
1=+ +1P, (12.41)
where
-
I=FF, 12.42)
and
.-l
le - FeFe
. -1l .
14 =FeF4FIFe =(FI/FH1 (12.43)
R B B | -1
IP=F¢FYFPFP F¢ Fe =F°¢APF¢,
with

. -1
AP =FPFP (12.44)

Damage Accumulation. We shall define the spall damage as the void volume
fraction, 7, in the plastically deformed and damaged, but unstressed, material.
Since the plastic deformation is isochoric, the volume of void space, vp , formed
in a unit reference-state volume of the material is related to 7/ by the equation

vp=vr(1+7). (12.45)
The contribution these voids make to the deformation gradient is
Fd=(p/w)V31=01+1)"31, (12.46)

SO we can write
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Fi=la+v)23p1, (12.47)

where 9 is given by Eq. 12.37.

Stress Relation. The stress relation for spall damaged-material must reflect the
reduction in elastic stiffness that results from the presence of voids. In addition
to the limitation on deviatoric stress that a ductile material can sustain, the
pressure that can be supported by material in which voids are present is also
limited by void growth or collapse to rather small values in both tension and
compression. For this reason, the stresses in a damaged body are adequately
described by Eq. 6.19,

fy = (B" -2 Eg 8 + 20" Ef —pr O Y(n-Mr)By,  (12.48)

describing linear thermoeclastic response. The strain tensor appearing in this
equation is calculated from F° by the equation

Ef =L(FEF5~8ap)Baibypy. (12.49)

Because Eq. 12.48 is being applied to a material containing voids, it is necessary
that the coefficients B", p", and y capture the effect of the voids. Several
investigators have proposed equations expressing the elastic moduli as functions
of the void fraction. As one would expect, the bulk and shear moduli decrease
from their values for the undamaged material as the void fraction increases. The
decrease is lincar in 7 for small values of 7 but the coefficient of the linear
term differs among the various available formulae. For the present purpose it is
adequate to adopt the forms

BY¥)=Bl(1-cs¥) and p"@)=pl(1-c¥),  (12.50)

where Bg and g are isentropic moduli for the undamaged material and cp
and ¢, are positive material constants. For Griineisen’s coefficient we adopt Eq.
11.38, which can be written

Yy, V)=yr[(v/vr)-V]. (12.51)

The void fraction, 7, can be expected to change as a result of both accumu-
lating spall damage and the elastic deformation of the damaged material. How-
ever, we shall neglect the latter effect because the linear elastic response of
hollow spheres to external pressure (or tension) is such that the void fraction
changes very little even though the outer diameter of the sphere is changed

significantly.

Viscoplastic Flow. We now turn to calculation of plastic deformation of the
damaged material. We shall adopt the equations in Sect. 7.3, but with modifi-
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cations to account for the effect of a dilute distribution of voids. The use of a
plasticity theory based upon dislocation-mechanical considerations is particu-
larly appropriate in the present case in which we must also deal with void
growth because experimental observations show that this growth can be ex-
plained by the same dislocation-mechanical processes that produce the visco-
plastic flow. When an edge dislocation encounters a void, the vacant half-plane
of atoms associated with it may enter the void and contribute to its growth
[92,93].

The presence of a dilute concentration of voids does not alter the mechanism
of viscoplastic deformation. As before, we identify slip planes by their normal
and Burgers vectors N®) and B®) | respectively, in the plastically deformed
configuration. The development of a distribution of voids in the material does
not alter the overall crystallographic orientation or the Burgers vector of the
material, which means that N*) and B® transform from the plastically
deformed configuration to the current configuration as though the material were
undamaged. This means that the components of these vectors in the current
configuration are

-1
n®=INPsraFy and b® = FE8ar BW, (12.52)

where J =detF€ =1+trE° +-.- and the vector magnitudes are

n® = N® [1 + B —~(N®)2EE NI 8raN " 8ap ] (12.53)

and
b =B® [1+B®)2 ey BO 8raB® g | (12.54)

to first order in E€.

The dislocation velocity in the current configuration is given by Eq. 7.112,
just as it was for the undamaged material but, for a given strain, the magnitude
of the shear traction, and thus the dislocation velocity, will be less than for the
undamaged material because of the lower elastic moduli. The dislocation veloc-
ity in the plastically deformed configuration is related to that in the current
configuration by the equation

v =@p®/B®y . (12.55)

The ratio 5®*)/B®) inferred from Eq. 12.54 is to be substituted into Eq. 12.55
to determine the relationship between the dislocation velocities in the plastically
deformed and current configurations.

As shown in Chap. 7, we have the equation
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n

L=l e

FPEP = N/ a®)BOON® (12.56)
k=1

for the components of FP .

We must now determine the shear stress that produces the dislocation mo-
tion. The shear traction ¥ in the direction b*) on the plane characterized by
n®) is given by Eq. 7.111 and, as before, the magnitude of this vector is 1) .
The dislocation velocity on this slip system in the current configuration is given
by Eq. 7.112.

The evolutionary equations 7.113 for the back stress, and 7.115 for the dislo-
cation density and the mobile fraction are the same as for the undamaged mate-
rial.

Uniaxial Deformation. In the special case of uniaxial deformation we have
F=diag | F1, 1, 1]
Fr =diag | 7P, FE, F? |

(12.57)
Fé =(1+9)" diag

L 11

Fe =diag | 7, Ff, Ff .

Since detFP =1, the longitudinal and transverse components of FP are related
by the equation

FP(FDH*=1 or FP=FP)V2. (12.58)

By Eq. 12.38 we have
FL=F'FYFpP, (12.59)

and, from Eq. 12.57,,

FL=Q+W3F FP. (12.60)
Finally, from Eqs. 12.38 and 12.58 we obtain the result

Fr=1=1+V)3FE FR =1+ V) 3FS (FF) 2, (12.61)

or
Ff=+V) 3 (FP)2, (12.62)

With these results, Eqs. 12.57; 5 4 become
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F = diag| 1+ V)2 FF P, 1, 1
FP = diag” FP, (FP)™V2, (FpyV2 “ (12.63)
Fe¢ =diag” FLe7 (1+'V)_1/3 (FLP)I/Z, (1+‘V)_1/3 (FLP)I/Z “’

with
e v/ivr

- VR__ (12.64)
L+ BFP

where we have used the equation detF=F1 =v/vr.

The clastic strain is rclated to the deformation gradient components by the
equation

E° =diag|| E?, ETE, ETC

= Ldiag U (F)? -1, (F)? -1, (F)? -1 ” (12.65)

Substitution of Eqs. 12.64 into Eq. 12.65 yields the elastic strain components

2
~ - FP
Fe=llj ¥\ )| e Ee=l L 1| (1266)
2 (l+‘V)”3FLp 2|1 (1+)?%/3
The nonzero stress components, given by Eq. 12.48, are

m =(B"+4uMEf +2(B" — 3™ Ef —pr Or YR [(v/vR) = V](N=T&)
(12.67)
t =(B" =ZuMES +2(B" ++uM)ET —pr Or YR [(v/VR) - V](N-MR),

with 33 =133 because of the uniaxial symmetry. The pressure is given by
p(Ee, M) =-B"@) (Ef +2E7) +prOr YR [(v/vR) - V](N-MR).  (12.68)

As for any isotropic material, the shear stress achieves its maximum absolute
value, |T4s¢|, on planes lying at 45° to the x axis, with

Tase =+ (1 —tn) = w(ES -Ef). (12.69)

We shall assume that all of the slip occurs on these planes and that its Burgers
vector is in the direction of the maximum shear traction vector which we desig-
nate 7Tsse. The unit normal vector characterizing these slip planes in the current
configuration is

H((p1)=-\]‘—2-(l,coscp1,sin(p1), 0<¢p1<2m. (12.70)
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The Burgers vector is taken to have the direction of the maximum shear traction
vector on these planes, so

b((p1)=$b(l,—005(p1,—Sin(pl) 0<p1<2m, (12.71)
and the shear traction vector is given by
‘t45°='c45o—l;((p1)=r45°t(l,—coscpl,—sin(m), 0<@i<2m. (12.72)

The images of n and b in the plastically deformed configuration are given (to
first order in E°) by

N =L+ L(Ef - BN, [(A-$(Ef - ED)Jeos @1, [(1-L(Ef - ED) Ising1 ),

(12.73)
and
B=1b(1-Ef,-(1- Ef)cos o1, - (1- Ef)sing1), (12.74)
where
b=B[l1+Ef +Ef]. (12.75)

Proceeding in the same manner as for the undamaged material we have, in
analogy to Eq. 7.129,

AP =L BN Vi (Tas°) diag |

2, -1 -1 || (12.76)
to within quadratic terms in Ee. Therefore, we have

F? = 1B N V= (tase) FP. (12.77)

The dislocation velocity in the current and plastically deformed configurations
are related by the equation

Vi(tase) = (b/B) V= (tase) = [1+ ES + E£ V= (Tas0) (12.78)

S0
EP =nBNum [ 1+ES +ES Wa(tase) FP . (12.79)
Analysis of spall problems set in terms of the foregoing theory can only be
achieved by full numerical simulation. Such calculations are beyond the scope

of this book, but results obtained using several related theories have been re-
ported in [34,36,41,65].



CHAPTER 13

Steady Detonation Waves

Chemical reactions may be initiated when a sufficiently strong shock is intro-
duced into a material of metastable composition. If these reactions produce
gaseous products and are (in aggregate) strongly exothermic, the material is
called an explosive. The chemical energy released upon passage of the shock
provides the energy required for its steady propagation, replacing (or adding to)
the energy supplied by the work done on the boundary that supports steady
shock propagation in a nonreactive material. A chemically-supported shock is
called a detonation shock. A detonation wave is a shock followed by a chemical
reaction zone and a region of unsteady flow, often in the form of a centered
simple decompression wave.

In this chapter we shall discuss two simple models of the steady detonation
process. The first and simplest, the Chapman-Jouguet (CJ) theory, is based
upon the premisc that the chemical reaction is so rapid that it can be assumed to
occur instantaneously. The waveform associated with this simplest case is illus-
trated in Fig. 13.1. The second model, represented by the Zel’dovich—von
Neumann-D6éring (ZND) theory, is an extension of the CJ theory that takes
finite reaction rates into account. These theories provide a sound basis for un-
derstanding detonation wave propagation and an appropriate point of departure
for conducting further research.

A
p Pa

centered simple

wave \\

|« constant
state

Figure 13.1. Tllustration of the pressure waveform predicted by the Chapman—Jouguet
theory.
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A steady detonation is steady in the sense that neither the jumps nor the
shock velocity vary as the wave propagates and the reaction zone is translated
forward at the shock velocity but unchanged in form. Even in the case of a
steady detonation, the decompression wave following the reaction zone is un-
steady.

Explosives can be gases, liquids, or solids but the detonation products are
entirely, or almost entirely, gascous. Gaseous explosives and the detonation
process they undergo are of both scientific interest and practical importance so
they have been widely studied. Among the reasons gas detonations are of scien-
tific interest is that they can be studied in chemical mixtures such as hydrogen
and oxygen for which the thermodynamic and chemical properties are well
understood. It is also important that the initial thermodynamic state of a gaseous
explosive can be controlled by changing the initial pressure and temperature.
The chemical energy liberated by reacting a unit mass of material can be de-
creased by adding a nonreactive diluent such as nitrogen or argon. Finally, the
pressures encountered in studying gas detonations are low enough to permit
repeated use of experimental apparatus, making investigations easier and less
expensive for gases than for condensed explosives.

Molecules of solid and liquid explosives are usually quite complex and the
chemical processes encountered in a detonation are correspondingly complex.
Details of these chemical processes are often poorly understood and uncertainty
regarding the composition of the reaction products carries over to uncertainty
regarding the chemical energy liberated by the reaction and the equation of state
of the reaction products. Technologically important solid explosives propagate
detonation waves at velocities in the range of 5000—9000 m/s and produce
pressures of 20—40 GPa, conditions under which measurements are often diffi-
cult and uncertain.

Even a small portion of detonation physics is much too broad a subject to
cover in this chapter. Our discussion is limited to plane, steady detonation
waves. Detonation physics and technology are discussed more comprehensively
in [3,20,27,42,43,71).

13.1 The Chapman-Jouguet (CJ) Detonation

In the most idealized view of a detonation, each particle of the explosive under-
goes an instantaneous transition from its initial (unreacted) form to reaction
products as the shock passes. The equation of state of the detonation products is
entirely different from that of the unreacted explosive and the internal energy of
the products includes the chemical energy liberated by the reactions. The shock
at the front of a detonation wave obeys the same jump conditions that describe
nonreactive shocks and, as with the nonreactive case, these conditions provide
three constraints relating the five variables p*, x+, v+ (or pt =1/v*), e+,
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and D, where we write Us =D in conformity with the practice of detonation
physics. The detonation products are described by a Hugoniot curve relating any
pair of the above variables in the states that can be reached by a shock transition
from the unreacted state. The Hugoniot for the detonation products is centered
on the state of the unreacted material into which the shock is propagating but is
offset from the center point by an amount that depends upon the chemical en-
ergy released by the reaction. The three jump conditions and the Hugoniot curve
suffice to determine the state behind the shock to within one variable, which we
have regarded as a measure of the shock strength. In the case of nonreactive
materials, steady shock propagation is sustained by energy supplied by forces
applied to material at the boundary behind the shock and the shock strength is
determined by the imposed boundary condition. The situation differs in the
present case because a detonation shock is sustained by chemical energy rather
than by forces imposed on the boundary. The new concepts introduced in this
section concern establishment of relations between chemical energy release and
shock strength.

Let us restrict attention to the case in which the unreacted explosive is at rest
in its reference state: x~ =0, p~-=pr, v-=vg, and ¢~ =¢r. The jump
conditions of Eq. 2.113 can be written

D (1—%} =it
prD ¥+ = p* — pr 3.1)

prD (e* —er)+5pr D (¥*)% = p* x*.

The usual manipulation of Egs. 13.1 gives the equation

+\ 1 + -
D=3+ (1-3_) _Prorr (13.2)
VR pr x*

for the detonation velocity, the equation
21Vt
p*=pr=pa D2(1-2) (133)
describing the Rayleigh line, the Rankine—Hugoniot equation
& =er +A(p+p )vR(l—ﬂ) (13.4)
2 R R :

relating the thermodynamic variables, and the equation

(x*)2=(p* - pr)(vr —V*) 13.5)
giving the particle velocity in terms of thermodynamic variables.
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Since the detonation products form a gas, the equation of state of these prod-
ucts is one appropriate to a gas. We shall use the ideal gas theory discussed in
Sect. 5.2 since it provides a convenient and widely used model. In this case, the
equation of state of the products takes the form

pv
= 13.6
epV)=Ft—1"9 (13.6)
where g > 0is the internal energy that is liberated by the chemical reaction of a
unit mass of explosive (The heat of reaction, g, is not to be confused with the

heat-flux vector component designated by the same symbol that was introduced
in Chap. 2).

Some comment is necessary regarding the parameter g in Eq. 13.6. When at-
oms bind together to form compounds, a certain amount of energy (called the
standard heat of formation and listed in chemical tables) is required to form the
molecules. When a compound is unaltered during a thermodynamic process it is
not necessary to take account of this heat of formation because the reference
energy state is arbitrary. When the chemical binding changes, however, encrgy
equal to the heat of formation of the reactants minus the heat of formation of the
products is liberated and must be taken into account in analyzing the process. In
the case of explosives, decomposition of the explosive molecules and recombi-
nation of the atoms to form detonation products results in a net decrease in the
energy binding the atoms into molecules, so the heat of formation of the detona-
tion products is less than that of the explosive. It is customary to set the refer-
ence energy of the unreacted explosive so that its internal energy is given by the
equation of state, for example, € =Cy 0 in the case of an ideal gas. Using this
same reference state for the detonation products means that the internal energy
of this material is that given by the equation of state for the products plus the
heat of formation of the reactant explosive minus the heat of formation of the
detonation products. When the detonation products are at the same pressure and
specific volume as that of the unreacted explosive (i.c., are at the same tem-
perature in the case of an ideal gas), the internal energy density of the detonation
products is less than that of the explosive by a positive amount ¢, leading to the
equation of state 13.6 for the detonation products if these products form an ideal
gas.

When Eq. 13.6 is substituted into the Rankine—Hugoniot equation the result
can be written
) () =1 2
( ) h)=1ops 2B 13.7)

where p2 =(I"-1)/(I' +1) . This reaction product Hugoniot is centered on the
state of the unreacted explosive but does not pass through this state. At the



13. Steady Detonation Waves 347

specific volume vgr the pressure on the Hugoniot exceeds the center-point
value, pr, by the amount pr(I'-1)q.

As noted previously, the foregoing equations are not sufficient to determine
all five of the variables that describe the detonation shock. Some means must be
found to complete the solution. To begin, let us consider the Hugoniot and
Rayleigh lines shown in the p—v plot of Fig. 13.2. We know that the state
immediately behind the detonation shock must lie on both the Hugoniot and the
Rayleigh line corresponding to the detonation velocity. The lowest-velocity
Rayleigh line shown does not intersect the Hugoniot, so it cannot correspond to
a solution. The intermediate-velocity Rayleigh line intersects the Hugoniot at
exactly one point, designated CJ and called the Chapman—Jouguet, or CJ,
point; it corresponds to a unique solution to the problem. The highest-velocity
Rayleigh line intersects the Hugoniot at two points, designated S and W,
respectively, for two possible solutions called the strong detonation and the
weak detonation.

CJ w

0 T T T ™ T |

3.50 4.00 450 5.00 5.50 6.00 6.50
vX104, m3/kg

Figure 13.2. Detonation product Hugoniot and three Rayleigh lines. The lower Rayleigh
line does not intersect the Hugoniot, the middle line is tangent to the Hugoniot at the
point designated CJ, and the upper line intersects it twice at points designated S and W.
The Hugoniot is drawn for the explosive TNT prepared at the density pg =1600 kg/m3 .
The equation of state is characterized by I'=2.6 and ¢=4.9x106J/kg .

Since the CJ state lies on both the Rayleigh line and the Hugoniot for the
detonation products, we can eliminate the pressure from this pair of equations
(Eqgs. 13.3 and 13.7), producing the result

2
1=M(l_m) __Q_C_J__(El—lﬂ)—(l+p,2) _ (13.8)
2u2q VR J| PRVR \ VR

Before solving this equation it is convenient to introduce the dimensionless
variables
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N2 ng = _KQJ_ e= PRVR (13.9)

so that it can be written

272 —(1+p2)(DE +e)ver +[212 +p2 DG +(1+p2)e] =0.  (13.10)

Solving for V5 yields the result

— 1 -
Vo =—=5 {(1+ u)DE +e)
2D¢; (13.11)
— — — /
[ +p2)2 (BE +e)? -4D3 (207 +p2DE + A +p)e] ] }
As discussed previously, the CJ state corresponds to the detonation velocity for

which a unique solution is obtained. Accordingly, we select D3 so that the
square root in Eq. 13.11 vanishes:

(1-p2)2 DG -2[4p2 +(1-p*)e] DZ +(1+p2)2e?=0. (13.12)
CI CJ

The solution of this equation is

D2 S 1+—1——(1—;,L4)e-+ 1+L(1— 4Ye v
RN RO Ch | e [T

/2]
=(1"2_1){1+(1+%eJ +Te,

(13.13)

where the positive square root has been taken to obtain a positive value for the
squared detonation velocity.

The CJ value of v can now be obtained from Eq. 13.11 which, by virtue of
the way in which D was chosen, takes the simple form

1 e r e

Ve =—@0+ 2 +—[=—]1+—}. 13.14

¢ 2( * ){ DCZJJ I‘+l[ DCZJ} ( )

The CJ pressure lies at the point on the detonation-product Hugoniot at
which V =v¢y:

Po_ o _1-p?vg+Qputle)
Pr Vc]—p.z )

(13.15)

Finally, substitution of this result into Eq. 13.5 gives
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52, =8V [ 24 (14 2y (1 -Tepye ] (13.16)
Ver—p

It is useful to consider the magnitude of the various quantities appearing in
the foregoing equations. The detonation products are very hot gases and a typi-
cal value of u? is about 0.1. For reference conditions near pr =latm., prvr
is only a few per cent of g for a typical gaseous explosive, i.e.,
0< prvr/q <1. When terms proportional to pr are ignored, D and g
stand in the relation D =2(I'2 —1)q so these two quantities are of comparable
magnitude, i.e., D3 /q~1. We also know that v/vg varies in the approximate
range 0.1<v/vr <1. In view of these facts it is usually reasonable to neglect
terms of higher order than the first in e. In this case, Eq. 13.13 takes the much

simpler form

D& =2(T2-1)q+2T prvg +-- (13.17)

when the original variables are restored. Similarly, substitution of Eq. 13.13 into
Eq. 13.14 and introduction of the same approximation gives

S = r + r PRVR
TTTrH 2C+D@-D) ¢

(13.18)

Substituting vy as given by Eq. 13.14 into Eq. 13.15 and discarding higher-
order terms yields the approximate result

2T +1
I'+1

por=2pr(-Dg+ J 2 (13.19)
Finally, similar manipulation of Eq. 13. 16 produces the result

Xl =2ji+... . (13.20)

In the limit pg — 0, Eqgs. 13.17, 13.18, and 13.19 take the even simpler
forms

DS =2(0*-1q, (13.21)
_ T
Ty = e, 13.22
=T ( )
and
por=2pr(T-1)q. (13.23)

By substituting these results into the jump conditions we can obtain
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X8 =2p*q
DL =(C+Dwpc (13.24)

Xcy =i—7‘_;‘i'DCJ-

A simple calculation based on the foregoing equations shows that

Dcy =Ccr =ccr + Xc3, (13.25)

where
C& =(r/v)*T pcrver and  c&; =T perves (13.26)

are, respectively, the squared Lagrangian and Eulerian soundspeeds at the CJ
state. Equation 13.25, which holds exactly for a general equation of state, can be
regarded as defining the CJ point. On this basis, the CJ point is also identified as
the sonic point in the flow.

Since gaseous explosives cannot exist at zero pressure, the effect of initial
pressure cannot be ignored when developing a theory for detonation of these
materials. Nevertheless, the limiting cases for small or vanishing initial pressure
agree with the exact results to within a few per cent for gas detonations when the
initial pressure is 1 atm. The results for the limiting case pr — 0 are those
usually seen in the solid-explosives literature because the equation of state for
the unreacted material is meaningful for p =0 and initial pressures of ~1 atm
are entirely negligible in comparison with the CJ pressure.

Some properties of four common explosives are given in Table 13.1.

Table 13.1. Properties of some common high explosivesa

Common name Chemical PR q Des Pc;
formula kg/m3 MlJkg m/s GPa

TNT C7HsN30s 1640 5.40 6930 21
Nitroglycerine C3HsN309 1600 6.19 7700 25
PETN C3HsN4O12 1670 6.28 8260 31
HMX C4HsN3Os 1890 6.19° 9110 42

a Data are from various sources and are intended for illustration only.

It is important to note that one need not restrict attention to detonations
propagating at the CJ speed. We have seen that no solution exists for D < D¢y.
When D > Dy, there are solutions corresponding to strong and weak detona-
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tions, respectively. The pressure behind the strong and weak detonation shocks
is given by

D \? [ (pen)?]
- por| —| d1+]1-1 ==
Ps pCJ(DCJ) (D)

DY [ Der)?
pw=Pc1[-b—(;) 1- 1—(—5—)

Values of vs, v, and other parameters characterizing strong and weak detona-
tion points can be obtained by application of the jump conditions.

(13.27)
q1/2

The strong detonation is discussed in the following section, but analysis of
the weak detonation is much more difficult and must await our discussion of the
ZND theory in Sect. 13.2.

13.1.1 Strong Detonation

In this section we consider the case in which a sustained pressure in excess of
the CJ pressure is suddenly applied to the boundary of an explosive. When the
applied pressure results from impact it is calculated as the point of intersection
of the p—x Hugoniots for the impactor and the explosive products.

The p—x Hugoniot for the detonation product is obtained by using Eq. 13.5
to eliminate v/vr from Eq. 13.7, yielding the Hugoniot

(x*)?

+=(T+1
p (+)2vR

+(C-1) %, (13.28)

when terms proportional to pg/p* are neglected. When the impact pressure
exceeds the CJ pressure a strong detonation is produced and the state behind the
detonation shock is uniform and characterized by the strong detonation parame-
ters

_‘_)_1 =1- (x+ )2

VR PrvR
(13.29)
p=Pr
x+

This detonation is stable in the same sense as a nonreactive shock, i.e., the
Lagrangian soundspeed in the region behind the shock exceeds the shockspeed.
This also means that a strong detonation cannot persist in the absence of sus-
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tained application of pressure at the boundary because any decompression wave
will overtake and attenuate the detonation shock.

PETN Ccl Copper

p,GPa
58883

0 1000 2000 3000 4000
X, m/s
Figure 13.3. Pressure—particle-velocity diagram for an overdriven (strong) detonation

produced in the explosive PETN by impacting it with a copper projectile plate moving at
the velocity xp=4000m/s .

13.1.2 Taylor Decompression Wave

Let us now consider the flow behind the detonation shock for the case in which
the supporting pressure, pg, is less than pcy. In this case the decompression
process will proceed along the isentrope through the CJ state and decreasing in
pressure to pp . This decompression wave is called a Taylor wave. The equation
for the decompression isentrope is pvT = pcr(vey)T . The Taylor-wave analysis
is one that is usefully carried out in both the Lagrangian and Eulerian frames.
The former is often the most useful for solution of problems arising in applica-
tions and is appropriate for interpreting experimental observations made using
pressure or particle-velocity gauges embedded in the explosive. Many experi-
ments conducted to study detonation physics produce data in the form of flash-
radiographic images. Since these images give spatial positions of wavefronts,
embedded tracer particles, etc. they are most casily interpreted in the context of
an Eulerian analysis.

Lagrangian Analysis. The X—¢ diagram for this problem is shown in Fig. 13.4.
Since the state behind the detonation shock is constant, the following wave is a
centered simple wave and, as seen from Eq. 13.25), the leading characteristic of
this wave lies along the shock trajectory. The trailing characteristic advances at
a slower rate given by this same equation evaluated at the boundary pressure
pe and the associated specific volume vg . In Chap. 9 we obtained the solution
for the simple wave fields.
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X=C*;

T T T T T »

X

Figure. 13.4. Lagrangian space—time diagram for a Chapman—Jouguet detonation wave.

The field equations to be solved are 9.11. We seek a solution that is a func-
tion of the single variable

Z= % , (13.30)
in which case the equations take the form
Z 37 +C} (%)Z —0
(13.31)

z(;v;)z +3z =0,
where CL =CL(v/vr). When the second of these equations is substituted into
the first, we obtain
[Z2-C2)%z =0, (13.32)
which has a nontrivial solution only if

Z=1C. (13.33)

To proceed, we need to determine the form of Cr (v/vr), the Lagrangian is-
entropic soundspeed in the detonation products. From Eq. 9.10 we have

()
CP = - (v )2 P2W) (13.34)
dv
where

PO)= pes( 2N (13.35)
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is the isentrope through the CJ point. When this isentrope is substituted into
Eq. 13.34 we obtain the relations

Veur V(TH+1)/2 (T+1)/2F
CL=De (¥2) = Doy (-2 p’;) , (13.36)

for the Lagrangian soundspeed in the decompression wave.

Substituting these results into Eq. 13.33 (with the positive root taken for the
right-propagating wave under consideration) gives

)2/(r+1)

v= vCJ (DCJ X

1 x \2rAT+n (13.37)
p:pCJ<_D‘aT) .

Equations 13.31; and 13.33 can be combined to give

Sla@g- o

which can be integrated to give

(r-1)/2
= :'ccjﬁl[ 21 ("CJ) —1}. (13.39)

I-1| T'+l
Substitution of Eq. 13.37; into Eq. 13.39 gives the solution
r+1[ 2T (1 X)<r DAT+) 1]

¥=X¥ 7| T4I\Dg 1 (13.40)

in Lagrangian coordinates. The simple wave region in which this solution ap-
plies extends from the detonation shock to the point where the pressure has
decreased to the value pp that is imposed on the boundary. The trailing char-
acteristic of the decompression fan is given by

X =C"t, (13.41)

where C* is obtained by evaluating Eq. 13.36 at p= py:

Ir'+1)/2r
C*=De (pB )( e (13.42)
pcy

The characteristic coordinate lies in the range

C+S-)§—SDCJ. (13.43)
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In practical applications it is usually permissible to neglect the pressure, pg,
in comparison with pc;. The equations given remain valid in this case and
+ =0, so the trailing characteristic is givenby X =0.

Results obtained from Eqs. 13.37 and 13.40 are plotted in Fig. 13.5.
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Figure 13.5. Lagrangian waveforms at 1, 2, and 3 ps after introduction of a CJ detona-
tion wave into an explosive characterized by the parameters D¢y =7000m/s and the
ratio of specific heats of the detonation products, I’ =2.8.

Eulerian Analysis. In this section we shall analyze the Taylor wave in an
Eulerian framework. Included is one complication not discussed in the
Lagrangian analysis just presented: When the detonation products expand into
the atmosphere to the left of the explosive, a shock is introduced into this gas.
The x—t diagram for the wave is shown in Fig. 13.6.
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The analysis of this problem proceeds exactly the same as the shock-tube
analysis given in Sect. 9.2. To solve this problem, one simply replaces the
parameters p- and p- with the CJ values of the corresponding fields and
inserts the value T'a for the ratio of specific heats of the background atmosphere
and the value I'op for the ratio of specific heats of the detonation product gas.
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©) 2\& S
s} \ > @
€ \ 051 d;\""',6
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Figure 13.6. Eulerian space—time diagram for a Chapman-Jouguet detonation wave.
The figure is drawn for TNT having an initial density of 1640 kg/m3, a CJ detonation
velocity of 6930 m/s, a CJ pressure of 21 GPa, a CJ particle velocity of 1848 m/s, and a
CJ density of 2236 kg/m3. The unreacted explosive in region 1 on the diagram is at rest at
p =0. The material to the left of the explosive is air (T'a =1.4 ) at standard conditions,
p =101325Pa and 0=298.15K . The Taylor decompression wave occupies region 2,
bounded by the detonation shock and its trailing characteristic. To the left of the decom-
pression wave we have regions 3 and 4 in which the pressure and particle velocity fields
are uniform, but the density and the ratio of specific heats are discontinuous at the contact
interface separating the air from the detonation products. Finally, this region of uniform
pressure and particle velocity is separated from the undisturbed air by a receding shock.
The field quantities are designated p, p , and x inregion 2, p+, pk ,and x* inregion
3, p*, php -and x* inregion4,and p-, p—,and x =0 inregion 5.

The isentrope defining the Taylor wave is (see Eq. 9.126)
VIpp
0= pes <E) , (13.44)

and the particle velocity at the point in this wave at which the pressure is p is
given by (see Eq. 9.126)

(I'op-1)/(2'pp)
L 1—(L> . (13.45)
Ipp -1 Pcy
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Since the characteristics are givenby z=x/t=¢ +% and

P (T'pp-1)/(2T'op)
CL =ccy <-——-) , (13.46)

pc

one obtains the solution as functions of x and # in the form (sec Eq. 9.134)

-1z-x 2T'pp/(T'DP-1)
p=ros (Tt st Toet) 13.47)
and (see Eq. 9.133)
J.‘=El‘_:f[(rDP D +2(z-cen) ] (13.48)
In these relations z = x/¢ occupies the range
xt+¢f £2< Dey, (13.49)

where x+ and ¢{ are to be obtained by matching this solution to the fields
behind the receding air shock.

The pressure and density behind the air shock are related by the polytropic
gas Hugoniot, which can be written
o (Ta+Dpi —(Ca-Dp-
(Fa+Dpa —(Ta-Dpa

p (13.50)

or

=px (TCa+h p*+(Ta-D p~
PATPA (Ta+D) p~+(Ta-D p*

(13.51)

From the jump conditions, Eqs. 2.110,,, the Eulerian shock velocity and the
particle velocity behind the receding shock are given by

PA X+
us= 13.52
* Pa-Pa (13:32)
and
p(P* px )]
Xt =~ (-1 (1-2A )] 13.53
[pg(p- )( PA )} (13:59)

or, using Eq. 13.51,

1/2
groo|D(ELy)_ 2PTTP) | (35
Pa P Ta+h pr+Ta-Dp
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Since the pressure and particle velocity must be continuous at the contact
interface, these quantities are the same in regions 3 and 4. The Taylor wave ex-
tends behind the detonation shock to the point where the pressure has decreased
from its CJ value to p*. Evaluation of Eqs. 13.44 and 13.45 at this point gives

_ p* \VTop
Prp = pc:( pc;) (13.55)
and
. . 2ccy (p"‘ )(FDP‘I)/(ZFDP)
T=Xer- 1- . 13.56
¥=Ya FDP"II: pes ( )

When these equations are adjoined to Eqs. 13.51, 13.52, and 13.54 we obtain
five equations from which the ficld values p+, x*, pjp, ph . and us can be
determined. This solution is best obtained numerically. An example solution is
illustrated in Fig. 13.7

When the pressure of the background gas is neglected there is no receding
shock and the pressure vanishes on the trailing characteristic of the Taylor wave.
In this case the solution is just as given above, with p*=0.

13.2 Zel’dovich—von Neumann-Déring (ZND) Detonation

In developing the Chapman—Jouguet theory it was assumed that the chemical
reaction occurred instantaneously in a shock transition from the initial state of
the unreacted explosive to a point on the Hugoniot of the detonation products. In
this section we introduce the Zel’dovich—von Neumann-Déring (ZND) theory
of detonation, in which the reaction proceeds to completion at a finite rate after
being initiated by passage of the shock. The waveform associated with this
theory is depicted in Fig. 13.8.

The ZND theory immediately presents problems that do not arise in the
Chapman—Jouguet analysis. In particular, we shall need the Hugoniot for the
unreacted explosive, the equation of state of the partially reacted material, and a
kinetic equation describing the rate at which the reaction proceeds. In each case,
determining these equations is difficult, involving both chemical and physical
considerations. Practical analyses of detonations are almost always carried out in
the Chapman-Jouguet context, but understanding of detonation physics requires
consideration of reaction processes.

We begin by seeking a solution to this problem in the form of a steady
structured wave. As we have seen, the transition from an initial state to any state
occurring in a steady wave satisfies the same conditions as a shock transition be-
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Figure 13.7. Eulerian waveforms at 1.5 ps after introduction of a CJ detonation wave
into TNT characterized by the parameters pg =1640kg/m3 Dcy=6930m/s and
I'op =2.7. The inset graphs are drawn to a scale that shows the effect of the detonation
upon the background air. Clearly this is a strong air blast, but the pressure is negligible in
comparison to the CJ pressure.
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Figure 13.8. Detonation waveform including the resolved reaction zone that distin-
guishes the ZND theory from the CJ theory.

tween the two states. The steady-wave transition from the unreacted material to
the fully reacted detonation products can be analyzed in exactly the same way as
in the Chapman-Jouguet theory, and leads to the same results. Strong, weak,
and C7 states can be identified. The propagation speed and the pressure, specific
volume, and particle velocity at the point in the steady waveform at which the
reaction is complete attain the same values as in the Chapman-Jouguet theory.
The point in pursuing the ZND theory is not simply to calculate this final state.
Rather, interest centers upon determination of the structure of the reaction zone,
and this is done by means of a steady wave analysis.

Since the state immediately behind the ZND detonation shock is one in
which the explosive is compressed but has not yet reacted, it lies on the
Hugoniot of the unreacted explosive. This state, in which the unreacted explo-
sive is compressed by a shock propagating at the velocity D , is called the spike
point (see Fig. 13.9, on which the spike point is designated SP).

We shall consider a single irreversible reaction converting the explosive into
detonation products. The degree to which this reaction has progressed is char-
acterized by a variable A, ranging from 0 to 1, called the extent of reaction. This
variable is introduced into the equation of state for the detonation products to
characterize both the varying characteristics of the reactant—product mixture and
the degree to which the chemical energy has been liberated. Its value increases
continuously over its range as the reaction zone propagates past a given material
particle. The chemical energy liberated by reaction varies from none at A =0 to
the heat of complete reaction, g, at A =1.

We shall conduct our discussion of the ZND theory in the context of gaseous
explosives such as a methane—air mixture because this case lends itself to the
simplest presentation. The internal energy function for the mixture comprising
the partially reacted explosive gas and the detonation products is taken in the
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form of Eq. 13.6, except that the heat of complete reaction is liberated in pro-
portion to the value of A at the material particle under consideration:

g, p, ) =fp:vrqx. (13.57)

In order to use this equation of state for all values of A the reaction must pre-
serve the number of moles of gas and the heat capacity must be constant and
have the same value for the reactants and products. For example, the methane—
oxygen reaction, CH4 +20; - CO2 +2H20, begins and ends with three
moles of gas and the average molecular weight is unchanged. In contrast, the
hydrogen-oxygen reaction, 2H; +0O; — 2H20, begins with three moles but
ends with two, necessitating use of a mixture theory to obtain the function
€(v, p,A). Although Eq. 13.57 is of limited applicability, it lends itself to a
simple exposition of the theory.

As with all steady waves, the process follows the Rayieigh line of Eq. 13.3.
In the present case the detonation shock produces a transition from the initial
state to the spike point and the reaction occurs in a smooth steady decompres-
sion wave connecting the spike point to the CJ point. The internal energy density
change satisfies the Rankine—Hugoniot equation, Eq. 13.4, throughout this
process.

Substituting Eq. 13.57 into Eq. 13.4 yields a result like Eq. 13.7, but with ¢
replaced by Ag. We write this equation in the form

1-p2 ¥ +(2p gA/ pr vR)

v —p?

P @) = pr (13.58)

where Vv =v/vr.

The result of evaluating Eq. 13.58 for a specific value of A is a Hugoniot
curve for material in the partially reacted state. This invokes a slightly general-
ized definition of a Hugoniot. We have previously defined a Hugoniot as the
locus of endstates achievable by a shock transition from a given initial state. We
now generalize this definition to say that a Hugoniot is the locus of states
realized by a steady wave transition from the given initial state. This means that
states in the reaction zone arise through transition from the given initial state to
points on a continuum of Hugoniots, called partial-reaction Hugoniots, each of
which is characterized by a value of A. These Hugoniots are centered on the
state (pr,Vr), but are offset from this point by an amount that depends upon
A g . A plot of several partial-reaction Hugoniots is given in Fig. 13.9.

The detonation shock is a transition from the reference state to the spike
point, the intersection of the Rayleigh line and the Hugoniot for the unreacted
explosive. This intersection lies at the point
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02
V/VR

Figure 13.9. Partial-reaction Hugoniots for a stoichiometric methane—oxygen detona-
tion. The parameters used are: py =101325Pa, vy =09012kg/m3, T'=13, and

q =4.566 MJ/kg . The spike point is designated SP.

vﬁzr—-l 2T prVR
ve T+l T+l D?

(13.59)
Psp 2D* r-1

pr (T+Dpgvr T+1

The particular state attained on each of these Hugoniots falls at the intersec-
tion of the Hugoniot and the Rayleigh line for the steady wave. When the equa-
tion of state & is given, Eqs. 13.58 and 13.3 can be solved for the pressure and

specific volume at any point in the wave.

Corresponding values of p and v in the waveform lie at the intersection of the
partial-reaction Hugoniot and the Rayleigh line. Equating the pressure given by
Eq. 13.3 with that given by Eq. 13.58 yields the expression

(13.60)

1 _
x=—2—;;(1~v‘)[DéJ<v 1) = prvr (L+12) ]
for the extent of reaction as a function of v .
Conventional chemical-kinetic equations express A in terms of the thermo-
dynamic state variables, so we will need the material derivative of Eq. 13.60:
. 1 .
A= [(DE + —-(T+DD3; v |v. 13.61
D7 (@8 + prm)=(T+D AL (13.61)
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_ In the steady wave the fields are functions of Z =X —Dcit so we have
Vv =-Dc1dv/dZ and the foregoing equation can be written

Der_[(r+1)D2,7-T(D + prve) a7

This equation can be integrated to give the steady waveform v =v(Z) if we can
express A as a function of v .

A typical kinetic relation for a simple chemical reaction is the first-order
Arrhenius equation

roves|- 2]
A=kQ-A)exp|~—|, (13.63)

R 6

where &k and et are constants called the frequency factor and activation energy,

respectively. To use this relation, we need to determine the temperature 6 in

terms of the value of v at points in the wave. Since the state point in a steady

wave moves along the Rayleigh line, p(v) = pr + D& (1-v)/vx , substitution

of this pressure into the equation of state 8 = pv/® gives the temperature as a
function of ¥ in the wave:

.V _

9(v)=—-qi-[pRvR +D§J(1—v)]. (13.64)

An equation for the v(Z) in the steady reaction zone can now be obtained

by substituting Eq. 13.64 into Eq. 13.63 and that result into Eq. 13.62. Integra-

tion of this equation by numerical means then gives the waveform. Some results
of this analysis are shown in Fig. 13.10
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Figure 13.10 Waveforms showing reaction zone structure are plotted as functions of
dimensionless distance behind the detonation shock. The calculations are made using the
parameters pp =101,325Pa, vp=09012, 05=293K, I'=13, s'/® =15000K ,
and ¢ =4.566x10°%J/kg for a methane—oxygen detonation. Waveforms in the reaction
zZone.
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13.3 Weak Detonation

Examination of Fig. 13.9 shows that the ZND analysis can be applied to calcu-
lation of the reaction-zone structure for a strong detonation in just the same way
as for a CJ detonation because the Rayleigh line intersects a partial-reaction
Hugoniot at each point of the steady wave between the spike point and the
strong detonation point on the A =1 Hugoniot. This is not true for points on the
Rayleigh line that lie between its two intersections with this Hugoniot so wave-
form analysis cannot be carried out in this region. This is one of several argu-
ments for the nonexistence of weak detonations, but it only means that these
detonations do not exist in the case of the single irreversible chemical reaction
discussed in this chapter.

Analyses of multiple reactions (for example, a rapid exothermic reaction
followed by a slower endothermic reaction), show that partial-reaction
Hugoniots may exist that bridge the region between the strong and weak deto-
nation states, thus opening the possibility of realizing a weak detonation. Effects
of viscosity, or slightly divergent flow can also yicld weak detonations and the
same is likely true if transverse waves or other phenomena remove energy from
the nominal uniaxial flow. There is reason to believe that weak detonation
occurs in most explosives of technological importance (see [44, Chap. 2]).
Fickett and Davis [43, Chap. 5] have analyzed a number of cases in which weak
detonations occur. The variety and complexity of these cases indicates that
analysis of the chemical process must go far beyond one or a few reactions. The
chemical process is also complicated by the inhomogeneity of the temperature
and deformation fields at the mesoscale. All of this means that even a compre-
hensive analysis conducted in the context of transient reactive flows may fail to
capture important features of the actual detonation process.

13.4 Closing Remarks on Detonation Phenomena

More than some of the preceding chapters, this chapter on detonation waves
presents a very idealized view of the subject. The art and science of explosive
materials and detonation processes have been the subjects of investigation for
some hundreds of years. The discussion of this chapter has been limited to a
brief account of the interface between this subject and the theory of propagation
of shocks in nonreactive materials. Among the important issues that were not
addressed are

i. Initiation Processes. An important aspect of explosive behavior is the
process by which a detonation is initiated. We have seen that a detonation
propagates at a constant velocity that is characteristic of the explosive and
produces a transition of the material to its product state. A detonation does
not ordinarily originate in this fully developed condition, and an important
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aspect of detonation physics concerns the process by which a detonation is
initiated. It is well known that stimuli much weaker than the detonation it-
self are adequate to initiate a reaction that can grow in intensity until a
detonation wave is formed.

Solid explosives may be in the form of castings solidified from the
molten material. In this case they are aggregates of molecular crystals
(TNT is of this form). In other cases (e.g., Composition B) they are made
by stirring granules of a high melting point explosive (e.g. RDX) into
molten explosive having a lower melting temperature (e.g., TNT). A
third kind of explosive is prepared by coating granules of the material
with a polymeric binder and pressing the resulting mixture into a dense
block of material (PBX-9404 is of this form). Experimental observation
shows that chemical reaction is initiated in these solid explosives by
shocks of strength far below the CJ pressure. Calculation of the tem-
perature of the unreacted explosive at points on its Hugoniot at which
shock-induced initiation is observed yields values at which the explosive
is found to be stable for long periods.

It is conjectured that the initiation process is strongly affected by me-
chanical inhomogeneity deriving from the complex microstructure of the
material, including voids, grain boundaries, polymeric binders, etc. When
a shock compresses material containing these inhomogeneities a micro-
scopically non-uniform temperature field is produced. in particular, kot
spots form at points of high deformation and the reaction begins at these
spots and propagates outward from them. This reaction generates a wave
of growing strength that eventually becomes a detonation. This initiation
problem has been studied extensively.

Reaction Mechanisms and Rates. In even the simplest case of detonation
of gaseous explosives the temperatures and pressures are higher than most
widely studied processes and the reaction proceeds more rapidly than in
flames or other common chemical processes involving the materials. It is
usually inferred that the reaction proceeds as a composite of several (often
many) sub-reactions. In the case of solid explosives the reaction is further
complicated by the microscopically non-uniform temperature field dis-
cussed in connection with the initiation process. Obviously, the overall re-
action rate produced in this situation would depend on both the physical
and chemical aspects of this model and a reaction rate law inferred from
the chemistry alone is entirely inappropriate.

Realistic Equations of State of Detonation Products. In the analyses pre-
sented in this chapter the detonation products were assumed to form an
ideal gas. This is oversimplified and, indeed, the high values of I'pp usu-
ally used to fit data on the behavior of solid explosives exceed the limit of
5/3 derived by the methods of statistical mechanics. Many other equations
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of state have been proposed for detonation products, and several have
been fit to observations of the behavior of a variety of important explo-
sives. When the detonation products do not appear instantaneously and in
the gaseous phase, one is faced with the matter of dealing with partially
reacted material that, in the case of a solid explosive, is a mixture of
gaseous products and granules of unreacted explosive. One is faced with
modeling a reaction process that has both chemical and physical aspects.

Stability of Solutions. The plane detonation waves that have been dis-
cussed in this chapter have been shown to be unstable in the sense that
waves form and propagate in the plane of the detonation shock. These
waves have been extensively studied for gaseous explosives and there is
every reason to assume that they are present when solid explosives deto-
nate.

As a result of these and many other aspects of detonation physics, the subject,

although highly developed, is one in which applications are based as much
on art as on science.



APPENDIX

Solutions to the Exercises

Chapter 2. Mechanical Principles

Exercise 2.7.1. Consider the rod, as shown.
Defining A by the equation [=AL, as the
Lagrangian description of the deformation we
have } l |

%=X +UX)=X,+(A-1X,
x2=X2, x3=X3,

B s

where we have written the first line so that it is apparent that U(X1) = (L -1).X1 .
The Eulerian description takes the form

Xi=x1—-u(x1))=x —(l—%) x1, u(x1)=(l-—%) X1 '
Xa=x2, X3=x3

From the Lagrangian representation:
F = diag| 1+Ux, 1, 1||=diag| A, 1, 1

B
C=FF=diag|?, 1 1],
E =diag| (-1, 0, 0],
= diag|| .- D+0(.-D?) 0, 0].
Note, in particular, that

En =(-L)/L+---=(final length— initiallength)/ initiallength + --- .

From the Eulerian representation:
F= diag| 1/, 1, 1]
~T -1
¢ =FF=diag" 122, 1,1 ||

e=%diag" 1-(1/2%), 0, 0 ||
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In this case,
e = (! - L)/]+---=(finallength — initial length)/final length + - .- ,

a result that differs from the Lagrangian strain measure. The two measures are
the same to first order, but the difference is important at large strain. Either
measure is a correct description of the kinematics, but the difference must be
taken into account when interpreting the physics that is represented.
Exercise 2.7.2. The deformation in question can be written

x1=X1+{any) Xz, x2=X2, x3=X3
in the Lagrangian representation, or

Xi=x)-(tany)x2, X2=x2, X3=x3

in the Eulerian representation. From this we get

1 tany 0 ) 0 tany O . 0 tany O
F={0 1 0] E=E tany tan’y 0|, e=—|tany —tan?y 0.
0 0 1 0 0 0 0 0 0

When we view this deformation from the Lagrangian perspective, we are led to
consider a plane X3 = const., as shown at the left in sketch (a) below. When we
take the Eulerian view, we are led to consider the plane described by the equa-
tion x3 =const. as shown in the sketch at the right below. Prior to the deforma-
tion, this plane would be as shown in the sketch at the left of each diagram.
After deformation, the line shown is rotated through the angle y, as indicated at
the right of each diagram. The deformation gradient and strain components are
measures of this angle. The quantity F}, is the tangent of the angle, and the
strain components F, and e, are each one-half of the tangent.

X2 l x2 ‘V
X1 X1
(2)
X2 /W* Xy I
X1 X1
(b)

Figure: Exercise 2.7.2



Appendix: Solutions to the Exercises 369

We see that Ez =—ey =tan’y . It is apparent from the drawing that the
Lagrangian eclement is extended by the deformation whereas the Eulerian
element is contracted. The extension in the former case is the same as the
contraction in the latter. Consider the stretch of each of these elements, defined
as A =1//L, the deformed length divided by the reference-configuration length.
In the Lagrangian case, A =(1+tan*y)"’? or tan?y=2%-1, which we can
write Egg = (32 -1) = (A -1)+ (A ~1)%. From this we sec that the small-
deformation approximation is F» =(/-L)/L+---, the usual definition of a
small Lagrangian strain. A similar analysis of the FEulerian case gives
en = %[1 +(@1/3)]=(-L)/1+---, the conventional Eulerian result.

Exercise 2.7.3. Let us express the motion in the forms

xi =[Xr +Ur(X, 0185 and X1 =[x —ui(x,1)]8ir, A
where u(x,0)=0 and U(X,0)=0, and where the Kronecker deltas are used
simply to preserve the convention that upper-case subscripts are associated with

the reference frame and the lower-case subscripts are associated with the spatial
frame. Substituting either of these relations into the other shows that

ui (e, )=Ur1(X,038;:, B)

i.e., the two displacement quantities are the same for corresponding values of x
and X Differentiating Eq. A; yields

‘ _ 0% _ o L, 0UI &
Fs(X, 0= Fe dis +—6XJ drni, ©
we also have
-1
Fri (X, t)=8Ji"%%'81i+..., D)

-1
as one can see from the fact that F; F;; = 8;; +---. The ellipsis denotes terms of
order higher than one in 0U; /90X, . We also have

Cy =FyFiy= [5;'1 +%5Ki]|:5u +M5Li]

oX1 Xy
ou; |, oU. ®
_ 1 '
=3 +[——6XJ +_6X1 ]+
and
E]J =%(C]J—SIJ)z%l:gT(]{].q-%‘[XJI_JI.]-}-...:E]J +...’ (F)
where

= _1|0oUr L oUs
Ew =7 l:aXJ ¥ aXI] ©
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is the linearized version of E;; and corresponds to the usual definition of strain
in the context of linear elasticity. We also have

bij =FiyFj; = Sij-i-[g)[(h g‘gj j| 81,5,]] (H)
SO0
0 6
eij = bl (81] bx]) 7 [ Ur UJ ] 6];8,]] (I)
where
~ 6U] aUJ
“=7 [6)( X1 ] 81105 &)

Differentiating Eq. B gives
OUr _ Oui Ox; i1 Ou;

E—XJ axj 6)( = a—F;JSIJ (K)
and substitution for F from Eq. C gives
oUr _ Ou 6U ou
-a)(_‘]_gx_ll:s 6X 81{]]811-—'6—8],] &ir +-- (L)

showing that the two displacement gradients are the same to first order. Substi-
tution of Eq. L into Eq. K gives

o Now ouil,  _s ...
ezj—Z[axj+5Xi:|+ BRCARE

. — 1 auz aul
=3 {axj Oxi ™M
is the linearized version of e;; and, as was the case with Eq. G, corresponds to

the usual definition of strain in the context of linear elasticity. Comparing
Egs. G and K shows that

where

&i=Ey 81 857, )
i.e, that € and E are the same, or, equivalently, that e and E are the same to
first order.

For the particle velocity and acceleration we have

[X1 +U(X, 1]t =—g’—81

(9)]
aUls,

or?

Xi =

We can also differentiate Eq. A, obtaining
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We can also differentiate Eq. A2, obtaining

When we multiply each side of this equation by 8;; — (du;/dx;) and contract on
i we obtain

-l
%=t ®

A second differentiation and elimination of higher-order terms gives

. Oy
xi=7tz—+..., (Q)

and comparison with Eq. O shows that particle velocity and acceleration can be
computed to first order by time differentiation of either U(X, ¢) or u(x, ?).

Finally, we have

p%:detF=det{8u+g%;—51i]=1+"*—+"'- ®)

Exercise 2.7.4. Lagrangian measures of deformation are calculated relative to
the reference configuration, whereas Eulerian measures are calculated relative to
the current configuration. Therefore, the Eulerian compression corresponding to
the Lagrangian compression A = (vr —v)/vr would be = (vr —v)/v and we
have 8 =A/1-A) and A=58/1+38).

Exercise 2.7.5. As suggested in the statement of the Exercise, a proof that the
symmetry of the Cauchy stress tensor is necessary and sufficient for satisfaction
of conservation of moment of momentum can be found in most elementary texts
on elasticity or continuum mechanics. A simple indication of the plausibility of
this result follows from the two-dimensional example illustrated below. We can
see from this figure that the condition that the block of material not rotate under
the influence of the shear stresses illustrated is that 15 = 121 .
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Figure: Exercise 2.7.5.

Exercise 2.7.6. The Eulerian form of the equation of conservation of mass is

op(x.0) , Dlp(x,0%:(x, 0] _
ot Ox;i '

From Eg. 2.15,
opX.0) _op(x,0)  Op(x.1) .
ot ot oxi

SO
op(x,0) _opX,1) op(x,1) .
ot ot ox;

For the second term of Eq. 2.86, we have

- -1 Y
Olp(x, D3 (%01 _0p(x.0) (7 SR D)
6x,~ 6x,- 6X1

so Eq. 2.86, becomes

Ap(X, 1) ol 0%i(X, 1) _

0 >
ot 0X;
the desired result.
The Eulerian form of the equation of balance of momentum is
Ot; (x, 1) Ox:i (x, 1) . 0xi (x, 1)
- +Xj (X, )————|=-p fi.
ox; P[ ot i (x,0) ox; pfi

(2.861)

(2.91)

(2.86),

The second term of this equation is just the material derivative of x the forego-

ing differential equation can be written
oty (x,0)/0x;—pXi=—p fi.

For the first term of this equation we have

GV
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dty(x,t) _ 8 (

1
—FimFin T
2%, %, ML N M\l)

J
o1 1 0

=Fipg— —Fin iy +—Fin —\Fire T .

Maxj(.] ]NJW 7 jNaxj( MJ\4N)

The first term of the right member of this equation vanishes according to the
equation given in the hint, so

ot(x,0) 1

o 1 19
N—\Fine Tun )= —F 8 Fp j~——(Fime T
ox, JFJNax,-( M MN) b, iN ]]6XI( iM MN)

(B)

Substitution of Eq B into Eq A leads to the required result.

The Eulerian form of the equation of balance of energy is

oe . 0Os ox; Ogi
—+ Xj— |~ ljj—— = ——~+pF, 2.86
P ( o om J Tox,  om (5%

The first term of this equation is just p€ so we have

2 o (X0 _ dqi (x,1) +pr

’__t..F. C
pe—Lj 'y 5X; ox; ©

Defining the Lagrangian heat flux by the equation ¢; =(1/J)Fix Qx allows us
to write

og 0 (1 o (1 10Q: _18Q:
% _ Y9 [ R =k | 2By |+ =L = T
ox; o (J ’KQKJ o o (J : ) J0X; JoX; ®)

For the second term of Eq. C we have

-l Ox; X, ¢ -1 ox (X, t
by KD _(p pop TKL)F,]. 25 (X,0
6X1 PR an (E)
=L Fx Txs 0% X,
PR oxr
and substitution of Eqgs. D and E into Eq. C yields the result

-1 -

pe—Fx Tx1 oxX.n__001(0 +pr. ®

0X1 0X;

To obtain the required form of this equation, it remains to express 0x; /0X; in
terms of OFEy; /0t. We have
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SO

aEu _ 62x,- 6xi n 6xi 62x,-
ot otoX; 60Xy 0OX; OtoXy
Oxi Oxi

=—Fy +
oX; 0X,

Fy

and
OEy Ox;
Ty ——=FuyTy —. G
= T X, Q)

Substitution of Eq. G into Eq. F gives the result sought.

Exercise 2.7.7. To make the required calculations, we begin by evaluating some
kinematical quantities for the uniaxial motion x =x(X,?), x2 =X2, ¥x3=X3.
We find that F =diagl|| Fi1, 1, 1|, F' =diag ||}/ F, 1, 1)}, x =(0x/81,0,0),
detF=Fi1=pr/p.

Equation 2.90, is

' —0. (2.90))

and Eq. 2.91, can be written in the required form.
Next, we consider Eq. 2.91,,
O(Fix Tw) 0x;
———-pr—=p fi. 2.90
ox, PR pfi (2.902)

Use of Eq. 2.64 to replace T by t in the first term of this equation gives

(F J Fi Ere t )— 0 (Ji~l 5 J—t 0 (J}«L J+J1_V1 O
8XJ iK Ky LTk Lky _aXJ Jk bki —lnaXJ Jk JkaXJ.

Following the hint, we see that the first term of the right member of this equa-
tion vanishes and Eq. 2.91 ; becomes

0 Bty Om
JE —pr o g
Tox, PR ~PS
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For the uniaxial motion the only nonvanishing component of the first term is
1 0/ O

Fi18X 08X’

and substitution of this result into the foregoing equation yields the required
result.

Equation 2.915 is
Oe 0Ly 00;
- = +pr ¥
PRo e T ax; TR
Substitution of Eq. G from Exercise 2.7.6 into this equation yields the result
Os Ox; o001
—-F — = + ,
PRy Ty =Gy, TR

and, by making the usual manipulations to replace T by t, we obtain the equa-
tion
de pr 7! Ox; 0Q;
- ) t] = _+ r . A
R p ox;  ox; % (&)
For uniaxial motions the only nonvanishing component of dx; /06X, is the 11
component, 0x/0X , so Eq. A becomes
Ot ox o0

RAEPANL LA A
PR M3x T Tax PR

which is the required result.

Exercise 2.7.8. Equation 2.110; can be written in the form p*(us—x")=
p~(us—x"). When this equation is substituted into Eq. 2.112 we obtain
Us =p*(us —x*)/pr, which is the required result.

Exercise 2.7.9. The Eulerian form of the jump equation for conservation of
mass can be written

(p* =pus=p* x* —p~x7.
When we use Eq. 2.112 to replace us with Us this becomes

(P* =P )PrUs +p™ X7 ) =p~(p* X" —p~ 7).
Performing the indicated multiplications, canceling like terms, and replacing p
by v yields the required result. The same procedure applies for the jump equa-
tion for balance of momentum, but Eq. 2.110, must be used in the simplification
process. The jump equation for balance of energy is treated similarly, but both
Eq. 2.112 and the result of Exercise 2.7.8 are used.
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Exercise 2.7.10. The total energy, &, in a unit mass of material is the sum of the
internal energy, €, and the kinetic energy, +%?: €=¢+2%2. Since the mate-
rial ahead of the shock is at rest, its kinetic energy is zero and the change that
takes place in the total energy upon passage of the shock is

AE=¢"—¢~ +%(5c+)2.
Using Eq. 2.115,
lr.02 . =87 7.
gf=—|x|"+——|x
[e]=5 BT +— 5]
in the case that the material ahead of the shock is unstressed and at rest, we have
[e]=4062,
showing that the increase in internal energy is just equal to the increase in

kinetic energy— equipartition of energy—and, as we have seen, the total is the
sum of the two terms is the change in total energy.

Exercise 2.7.11. The equations are derived by explicit consideration of the
motion illustrated below. The material body is of unit cross-sectional area and
thickness L. The principle of conservation of mass holds that the mass of the
body, which is the sum of the masses of the part ahead of the shock and of the
part behind the shock, is constant and equal to its value in the reference state.
The mass of the material behind the shock is its mass density multiplied by the
volume of material, (us —x*)¢, plus the same quantity for the material ahead of
the shock. This sum is to be equal to the mass at =0, p~ L . Accordingly,

p*(us—x)t+p (L+G ~us)t)=p~ L,
or
(" —plust—(p*x* —p~x7)t=0,
which we write
[plus =[px]. (2.110)

The principle of balance of momentum holds that the rate of change of momen-
tum of a material body is equal to the applied force. The momentum of the
material behind the shock is the momentum per unit volume, p* x*, and the
volume of a unit cross section of the material is (us—x*)¢ so the total mo-
mentum of this material is p*x* (us—x")f, and its rate of change is
p* x* (us —%*). A similar calculation for the material ahead of the shock gives
its rate of change of momentum as p~ x~ (¥~ —us), with the total rate of change
of momentum being the sum of these quantities, The applied force on this
column of material is #; —# , so we have

prxt(us —xt)+p X~ (X" —us) =4, -4},
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Figure: Exercise 2.7.11.

or
[px]us=[px*-m]. (2.110)

The energy of a unit volume of material is p(e+(x2/2)). The principle of
balance of energy holds that the rate at which this energy increases is equal to
the power supplied, so we have

pHet + (1) Nus =X )+p e + 2 (F7) (X —us) =~ X +4) X7,

or
[pe+55)]us =[p(e+33? )% -t x]. (2.1105)

Chapter 3. Plane Longitudinal Shocks

Exercise 3.8.1. The work, /¥, done on a unit area of the boundary is the product
of the force applied and the distance moved: W =-t); " t. When we use Eq.
2.110, to express -tj; in terms of other variables, this can be written
W =p*(x*)?(us — x*)t. The additional energy imparted to a unit cross section
of the material by the shock is the sum of the internal energy and the kinetic
energy in the material behind the shock: E =[p*e*(us —x*)+1p*(¥*)?]¢. When
we relate e+to the other variables using Eq. 2.110; and make the same
substitution for —#;, as before we obtain the result sought.

Exercise 3.8.2. From Eq. 3.12 we see that [ p] >« as 1-prS[-v]—0. This
latter limit is achieved when p* =[S/(S—-D]pr . For $=1.5, a typical value,
pmax = 3pr . The compression achieved by a strong shock is much less than
would be achieved by isothermal or isentropic application of the same pressure.
Be aware that the limiting compression is a mathematical consequence of the
form of Eq. 3.12, but usually lies beyond the range of applicability of the em-
pirical linear Us —x Hugoniot.
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Exercise 3.8.3. The Hugoniot diagram is shown below for the impact of copper
on aluminum at the velocities of 0.5, 1.0, and 1.5 km/s.

A
20+
= 154
&
101 Al o
Cu
51
Cu
0 : . .
0.0 0.5 . 1.0 1.5
x, km/s

Figure: Exercise 3.8.3.

The Hugoniot curve for the target is
pt =prr (Cor +STX) X",

where the subscript T refers to the target-material value of the parameter. The
Hugoniot curve for the projectile is

P =pre [Cep +Sp (Xp ~x%)] (xp ~x*).
These two equations are easily solved for p* and x*. The solution for x* is

. 1

Xt = (Prt Ct +pre Cp +2Prp SpXp) Xp
2(pRTST"pRPSP){ ! e

i[(pRT Cr +Pre Cp)? +4pr1 Pre (Cr ST +Cp Sp +2 87 SP)]I/Z} ,

where the ambiguous sign is resolved by the requirement that x* be positive but
less than xp. The value of p* is then determined by substitution of this result
into the Hugoniot of the target material. The results for the 1 km/s impact are
x* =0.69km/s and p* =12 GPa.

Exercise 3.8.4. The Hugoniot curves for this problem are shown below and the
pressure and particle velocity are calculated as for Exercisc 3.8.2.

The pressures, particle velocities, etc. for this case are given in the following
table.
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Figure: Exercise 3.8.4.

Tungsten projectile impacting a target at 10 km/s

Targgt * p+ Ust Use P—PR P—PR
material km/s GPa km/s km/s P |p R
Al 7.58 327 15.5 -7.0 49% 35%
Cu 6.00 690 12.9 -9.0 47% 45%
w 5.00 982 10.2 -10.2 49% 49%

Exercise 3.8.5. The Hugoniot curves for this problem are shown below and the
pressure and particle velocity are calculated as for Exercise 3.8.2.

150 - W\ Ay
Cu
© 100 J
A
& Cu
< 5 | Al Al
0.
0.0 0.5 1.0 1.5 20 25
x,km/s

Figure: Exercise 3.8.5.

The pressures, particle velocities, etc. for this case are given in the following
table.
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Tungsten projectile impacting a target at 2.5 km/s

Target %+ p+ Usr Usp P~ PR P-PRr
material kn/s GPa km/s  km/s Pt P Ip
Al 2.00 45 8.0 -4.7 25% 11%
Cu 1.59 90 6.3 -52 25% 18%
w 125 134 5.6 -56 22% 22%

Exercise 3.8.6. The Hugoniot curves for this problem are shown below and the
pressure and particle velocity are calculated as for Exercise 3.8.2. The pressures,
particle velocities, etc. for this case are given in the following table.

A
50 W w
40 -

£ 301

> Cu Cu

< 20 ‘
10 - Al

Figure: Exercise 3.8.6.

Tungsten projectile impacting a target at 1 km/s

Targt?t * P+ Usr Usp P~PR p—PR
material /s GPa km/s km/s p | |y
Al 0.82 14.7 6.43 -4.25 12.8% 42%
Cu 0.66 29.0 492 -4.45 13.4% 7.6%

w 0.50 447 4.65 -4.65 10.8% 10.8%

Exercise 3.8.7. The pressure—particle-velocity Hugoniot and X—¢ diagrams for
the case of a high-impedance film on the back face of a low-impedance plate are
shown below. When the incident shock encounters the film, transmitted and
reflected shocks of higher pressure (state 2) are produced. Reverberation of the
transmitted shock in the film leads to production of a sequence of states, as
shown. The surface of the low-impedance plate is gradually decompressed and
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accelerated to a state of zero stress and the velocity xr that would have been
attained in the absence of the film. The plate/film interface is always in com-
pression so there is no tendency for the film to separate from the substrate and a
measurement of the velocity of the surface of the film can be considered to be
the same as the free-surface velocity of the plate in the absence of the film. The
time required to approach this equilibrium state decreases with decreasing thick-
ness of the film.

A
/
2

\
/NG

Figure. Exercise 3.8.7. Pressure—particle-velocity Hugoniot diagram and X~f diagram
for the interactions produced when a shock propagating in a low-impedance plate
encounters a thin high-impedance film on its surface. The Hugoniots of the plate material
are shown as solid lines and those for the film are shown as broken lines.

Pressure—particle-velocity Hugoniot and X —¢ diagrams for the case of a
low-impedance film on the back face of a higher-impedance plate are shown
below. When the incident shock encounters the low-impedance film, transmitted
and reflected shocks of lower pressure (state 2) are produced. Reflection of the
transmitted shock from the rear surface of the film accelerates this surface to a
higher velocity (state 3) than would have been attained at the surface of the plate
had the film not been there. If the film is free to separate from the plate, it will
do so at the time of interaction producing state 4. If it is bonded to the plate sur-

A

Figure. Exercise 3.8.7. Pressure—particle-velocity Hugoniot diagram and Xt diagram
for the interactions produced when a shock propagating in a high-impedance plate
encounters a thin low impedance film on its surface. The Hugoniots of the plate material
are shown as solid lines and those for the film are shown as broken lines.
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face, a tensile stress (state 4) will be produced at the interface. If this stress
exceeds the bond strength, the film will separate and be expelled from the plate.

It is clear from these analyses that a back-surface mirror or electrode placed
on a sample should be of higher impedance than the sample.

Exercise 3.8.8. The pressure—particle-velocity and X—¢ diagrams for this
problem are given below. The incident shock takes the material from the state of
zero stress and velocity to the state 1. The initial response of the gauge layer is a
transition to state 2, but subsequent reverberations of the shock in the gauge
layer bring the pressure to that of state 1, the pressure behind the incident shock.
In principle, infinitely many reverberations are required for pressure equilibrium
but the pressure rises essentially (say, within the gauge accuracy) to its equilib-
rium value within only a few reverberations. In materials that provide a good
impedance match to the gauge insulator, fewer reverberations are required. A
typical thickness of the gauge layer is 25 pm and a shock transit across this
layer requires about 10 ns, so the gauge requires about 50 ns to respond to a
shock.

6 |6 -
20 — 1
/s 5|8
© 5 <. \4
% ~ .
. 3 XA 3| 3
10— . —
>\\ 212 0
S~
— 2
P e ! 0
o 0
0.0 0.5 1.0
x, km/s

Figure. Exercise 3.8.8. Pressure—particle-velocity and X - ¢ diagrams for shock interac-
tion with an embedded polymer-insulated manganin gauge. The solid lines are for a
copper sample and the broken lines are for the polymeric gauge insulation.

Exercise 3.8.9. The required diagrams are shown in the figure below. This
figure is drawn for the case in which the impactor and the backer plate are
aluminum oxide monocrystals (sapphire) and the target plate is an X-cut o
quartz crystal. The impact velocity is 85 m/s. As shown on the p—x diagram,
the quartz plate experiences a sequence of shock compressions ultimately
tending to produce the pressure that would have been realized by impact of the
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Figure: Exercise 3.8.9.

two sapphire plates. Although not important to this analysis, it is noteworthy that
the quartz plate is piezoelectric. The current produced in a short circuit con-
necting electrodes on the two faces of the quartz provides a measure of the stress
difference between these faces.

Exercise 3.8.10. The required diagrams are shown in the figure below.

1.5 1
PMMA Q | PMMA

5" - 3

4|4 & s 4
3" R PA{

2y 205 N &
i 2 g&i\“\
o 0l 0 0.0 e — —— e
0 100 200 300 400
%, mls

Figure: Exercise 3.8.10.

This figure is drawn for the case in which the impactor and the backer plate are
made of the polymer PMMA (polymethyl methacrylate) and the target plate is
an X-cut o.-quartz crystal. The impact velocity is 450 m/s. As shown on the
p—x diagram, each of the PMMA plates experiences a sequence of shock
compressions ultimately tending to produce the pressure that would have been
realized by impact of one on the other without the intervening quartz plate.
‘When the quartz plate is configured as a gauge {1] the assembly can be used to
measure the sequence of shocked states in the PMMA.

Exercise 3.8.11. A sketch of the physical layout, the X—¢ diagram, and the
—ti1 —~x Hugoniot diagram for the problem are shown in the figure below. The
sketch of the physical configuration suggests an explosive lens arranged to drive
a shock into a copper plate that is backed by a sample material, in this case,
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tungsten. The arrows labeled P,, P,, and P, denote electrical contact pins or
other devices that detect the arrival of a shock wave. When the assembly is
made, the depth of the well in which P, is located is measured carefully so that
the shock velocity in the copper can be determined by dividing this distance by
the time interval between the signal from P, and that from P,. The Hugoniot for
the copper standard is known, as shown in the lower panel of the figure, and
knowledge of the shock velocity permits the Rayleigh line to be drawn, thus
identifying state 1. Similar measurements permit the Rayleigh line to be drawn
for the shock in the tungsten sample. Since the state in the tungsten lies along
both this Rayleigh line and the Hugoniot for a left-propagating shock centered on
state 1 in the copper, a point on the tungsten Hugoniot (not yet determined, but
suggested by the broken line) has been determined. Use of explosive devices
producing shocks of different strength, plates of other materials in place of the
copper, etc., permits determination of other Hugoniot points for the sample
material.

A
W ¢
~—— P3 22
HE | Cu 1
~ P, 0
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Figure: Exercise 3.8.11.

Exercise 3.8.12, This experiment may use an explosive driver like that sug-
gested by the foregoing figure, except that the sample is placed in direct contact
with the explosive. Pins are arranged so as to measure the shock velocity in the
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sample. In addition, another pin is placed at a small, carefully measured distance
behind the sample. The velocity imparted to the unrestrained surface of the
sample by the shock is determined by dividing the separation distance of the
standoff pin by the time between the arrival of the shock at the surface of the
sample and the arrival of the sample itself at the pin. The particle velocity of the
material behind the shock is taken to be half of the measured free-surface
velocity.

Exercise 3.8.13. The configuration at the time ¢ is shown in the following
figure. The work done on the boundary is the applied stress times the distance
the boundary has moved, —#1 x+¢. The kinetic energy of the material is one-
half its mass times its velocity, %(pR Us t)(x+)2. The internal energy per unit
mass (from the jump equation) is %(J’c+ )2 so the total internal energy in the mat-
erial at the time ¢ is %(pR Us 1)(x+)?. Energy balance requires that the work
done on the boundary be equal to the sum of the internal and kinetic energy:

=1 %+t =2(pr Us ) (x+) 2+ 3(pr Us 1)(¥+) 2 = (pr Us £) (x+) 2,

but the jump condition gives —tn =pr Us x+ so the energy is seen to be in
balance. One-half of the energy in the material is kinetic energy and one-half is
internal energy.

c— Us .
—t;l tiy =tI1 t11 =0
> e=¢g" e=0
—

Figure. Exercise 3.8.13.

The energy increase in the material as the shock advances must be supplied
by the stress applied to the boundary. A shock of constant amplitude cannot
exist without this constant supply of energy. In Chap. 13 we shall sec that a
steady shock can be supported by release of chemical energy instead of a
boundary stress. In this case the material is called an explosive and the chemi-
cally-supported shock is called a detonation shock.

Chapter 4. Material Response I: Principles

Exercise 4.4.1. The stress transforms as a tensor accord_ilng to Eq. 4.5,
t" = QtQ, the stress rate transforms by Eq. 4.6, t" = Qt6+ QtQ-Qt Q, and the
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velocity gradient transforms by Eq. 4.3, I = Q Q+QI Q. Since t=t-tl-1t, we
have t* =" -t I'-I"t", or
¥ =QtQ +QiQ -QtQ" -QtQ" (QQ+QIQ")-(QQ +QIQ")Qt Q™!
=QiQ - QtIQ - QItQ~ = Q(i~tI-1t)Q~ =QfQ"',

so we have the equation t* = QtQ™!, which is the transformation equation for a
tensor.

Exercise 4.4.2, The stress rate of Eq. 4.8 is the same as the Jaumann rate
discussed in the previous exercise except for the additional term (trd)¢; . Since
d" =QdQ! we have trd” =trd and, since t transforms as a tensor the same is
true of ¢t.

Exercise 4.4.3. The constitutive equation of interest is
Ty =Cuxt Ext.. (A)

If we subject the reference coordinate frame to the orthogonal transformation
Hj, the stress and strain tensors transform according to Eqgs. 4.17:

-1 -1
Ty =HipTeg Hpy  and Ely = Hix Txe Hiry B)

The fact that the constitutive equation is invariant to this transformation means
that

Ty =Cuxe Exe, ©
where the coefficient tensor C has the same components in both Egs. A and C.

Substitution of Eqs. B into Eq. C yields the result

-1 -1
HipTrg Hgy =Crxr Hxe Ecp Hpr . D)
Pre-multiplying each member of this equation by H,;, post-multiplying by
Hj; , contracting, and use of Eq. A, gives
-1 -1
Cuscp Ecp = Ha1 Cuxr Hxe Ecp Hpr Hs ,

or
(Cupcp ~Har Hps Hex Hpr CuxrYEcp =0,

since H™! = H" . Because of the symmetry with respect to interchange of indices
the coefficient of E in this equation vanishes and we see that C must satisfy the
equation

Cuscp = Ha1 Hps Hex Hpr Crxe

The same procedure leads to analogous results for higher-order elastic
moduli. Although working out the specific result for a given H is very tedious,
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tables of second-, third-, and fourth-order coefficients have been prepared for all
crystal classes and for isotropic and transversely isotropic materials.

Exercise 4.4.4. For the motion we choose x;(X, £) = X7 81 + 4a () (X1 - XT),
where we require that A be invertible. With this we have F=A(s) and
F = A(t) . For the specific entropy we choose N(X, £) =n"(¢) + Bi ())(X1 - XT)
so we have n(X, £) =0 (f) + B: (t) (X1 — X7) . The temperature field requires a
slightly different approach because we also need to provide for an arbitrary
value of the spatial gradient g; =0, and its material derivative g;. Choose
0(X, ) =0"(t) +ci(H)Au () (X1 — XT) . From the motion we have 4 (x;—x)=
Xr-Xi so 0(x,0)=0"(1)+ci(H)(xi—x'), where xf=X]8;. With this,
gi(x,H)=ci(t) and g; (x,t)=¢:i (r).

Exercise 4.4.5. For an inviscid thermoelastic fluid we have
e=e(v,n, £),0=0v,1,8), & =-p(¥,n, )35, g=q(v,n. g). (A)
The Clausius—Duhem inequality to be satisfied is, in the form 4.6,

1, . 1 1
02—e-nN——tijli +—0qi gi.
gt oilit e qi g ®

When we substitute Egs. A into this inequality we obtain the new inequality

1{0e. Oe. O . .1 1
02| —v+—N+—g; |-A+—plu +—qi gi,
gi po po?

but we have /i = %xx =J/J =v/v so the inequality becomes

021(§+p]v+(1 oe —1)1'1+1 %% g+ éz q:8:.
p

0\ ov 0 on 6 Ogi

If we choose g=0, g¢=0, and =0 we see that we must have
_0Oe
ov

if the inequality is to be satisfied for an arbitrary value of v . Similarly, we find
that

so we have e =¢g(v,n) and Oe(v,n)/On =0 and we are left with the require-
ment on q(v,n, g) that ¢; g; <0.
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Exercise 4.4.6. For a nonconducting thermoelastic fluid the Clausius—Duhem
inequality can be written

1 0e . [10e . 10,
02— —+piv+| —-1IN+——0a;.
6\ ov 0 On 0 Ju

Since e(v,n, a)=¢gs (v/a,m) the requirements imposed on € are that

— 1 aes(‘)s, n) e_aSS(VS, n)
o Ovs ’ aﬂ ’

and we are left with the inequality

OZ_Lass(v/a,n)d

_Yp a—ox(,m)

vp.
Yo
o o T

ol Ovs

in which v>0, p>0, and a> 0. During the collapse process, o —oeq(v,n)>0.
Therefore, it is necessary and sufficient that T >0 for satisfaction of the inequal-
ity.

Chapter 5. Material Response II: Inviscid Compressible Fluids

Exercise 5.7.1. To derive Eq. 5.30 we note that

on
ov

_on
o Op

or
eav

;]
The required result follows by substituting expressions for the derivatives from
Table 5.1.

Exercise 5.7.2. The hint given in the exercise suggests that we consider deriva-
tives of the function p = p(v, 8(v, n)) . Accordingly, we calculate

A
66v6v

op
ov
n

_or
ov

B

Ll

[}

and substitution from Table 5.1 yiclds the required result.

Exercise 5.7.3. The hint given in the exercise suggests that we consider
derivatives of the function 1 =n(8, v(p, 0)) . Accordingly, we calculate

onl _om

_onf  on
00 00
V4

ov

ov
26
0

>

p

and substitution from Table 5.1 yields the required result after making the
substitution yC¥ =vBB® that follows from Eqs 5.26 and 5.29.

v
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It is appropriate to establish the conditions under which a function of the
form n=n(0,v(p,0)) can be obtained. The pressure response function
p = p(v,m) can be inverted to yield a relation of the form v =v(p, n) since the
derivative, Op(v,m)/On=-B"/v, is nonzero. The temperature response
function ©=6(v, ) can be inverted to give n=n(v,0) since 90(v,m)/on=
0/C™ 0. Then, the pressure-response function can be written
p=p@,nv,0)=p(»,0). Since Op(v,0)/0v=-B®%/v20 this can be
inverted to give v=v(p,0). Substitution of this expression into n=mn(v,0)
gives n=n(v(p, 0), 0), which is the function needed.

Exercise 5.7.4. This solution is begun by calculating B"/B® and C?/C"
from Eqgs. 5.31 and 5.32.

Exercise 5.7.5. The principal Hugoniot for an ideal gas is given by Eq. 5.59:
T+Dvr—-(T-Dv
T+)v—-T-Dvr

This Hugoniot is transformed to a P—x Hugoniot by substituting this result
into the jump equation

Py =pr A)

# =[(p-pr)OR-V)],
and solving the result for p®(x) . The result is

s V2
PG = pril 432 45 __F_+( = ) N
4 prvr PRVR  \4pRWR

where the + sign was chosen to ensure that p became large for large x .

Exercise 5.7.6. The second-shock Hugoniot is obtained by substituting Eq. A of
the foregoing solution into Eq. 5.165 with y(v) =T —1. The result is

PO (C4D-(C-DF T-DA-PH[T+)-(T-Dv"]
pr (DT -Dv* [T+Dv=(T=-DF [ +DF* -~ T -Dv*]’

where v =v/vg and v* =v* /vg.

Exercise 5.7.7. The principal Hugoniot for an ideal gas is given by Eq. 5.59:
TC+Dvr-(T-Dv
T+Yv-T-Dvr

Examination of this fraction shows that p(H)(v) >0 as v > vg (IF=D /(T +1),

the limiting specific volume that can be achieved by shock compression of an
ideal gas. The associated limiting density is

PP =pr (A)
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Plimit = PR (T +D)/I"=1) . ®

Exercise 5.7.8. The solutions are: B®=p, BM=Ip, p=R/pv=1/0,
y=@R/Cqp=T-1, C=TCy. It is useful to note that C*=3®/~2 and
y =2/3 for a monatomic gas. These values are approached rather closely when
highly porous metals are compressed by strong shocks that cause their
temperatures to rise to some tens of thousands of Kelvin [104].

Exercise 5.7.9. Demonstration of the truth of the assertions of the exercise is
based upon analysis of Eq. 5.136,

(H) (H)
dndv(v) - 29(;)(‘/) {p(H)(V) -p +(V— _v) dpdv (V)} . (A)

We first consider the concave upward (normal) Hugoniot. Write Eq. A in the
form

) _ v -v {dp“‘%v)_p"—p(ﬁ)(v)} ®

dv 260 v) dv VT v

To demonstrate the theorem for compression from p~ to some higher
pressure we need to show that dn™(v)/dv <0. The factor (v~ —v)/26)(v)
in Eq. B is positive, so the sign of the derivative turns on the relationship
between the two terms in braces. The term (p™(v) — p~)/(v™ —v) is the slope
of the straight line in the figure and the term dp™(v)/dv is the slope of the
tangent at the point p, v. In the case shown in which the Hugoniot is concave
upward the tangent line is steeper, i.e., its slope is more negative than that of the
secant line so the sum of these terms, and hence dn™)(v)/dv is negative. Since
this is true for all values v < v~ integration from any compressed state to the
specific volume v~ gives a lower entropy density for the state p~, v~ than for
any compressed state. Accordingly, the entropy increases upon passage of a
compression shock. Similar consideration of the other cases completes the proof
of the theorem.

Exercise 5.7.10. Equation 5.142 is a first-order linear ordinary differential
equation of a form that we shall meet quite often in this book. Substitution of
Eq. 5.143 into Eq. 5.142 shows that the former is the solution of the latter that
satisfies the initial condition 6 (vg)=0". Reduction of Eq. 5.143 to Eq.
5.146, when y(v) =yr v/vr and p@)(v) is given by Eq. 3.12, is routine.

The integral is casily evaluated using the trapezoidal rule to calculate the
area under the curve representing the function f(v) =«c.(v)/y%c(v). The idea is
illustrated in the figure below.
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Figure: Exercise 5.7.10.

The value of the integral is approximately the sum of the areas of the trapezoids
formed by the dotted lines:

S N
0N = Z G+ )i v

The sum, and then the right member of Eq. 5.146, is easily calculated and a
graph of the result prepared using a spreadsheet program. Note that the area is
overestimated for concave upward curves and underestimated for concave
downward curves. Books on numerical analysis present more refined ways of
evaluating the integral.

Exercise 5.7.11. Transforming a known isentrope to one for a different value of
the specific entropy is not as easy as transforming an isotherm to a different
temperature, but it can be done following a procedure that is useful in
transforming other thermodynamic curves. We begin by using the Mie—
Griineisen equation to relate the two isentropes of interest. We have

Yok * v ok *
PV NT)=pM(vin )+1%[e‘">(v; ™)-p®E ) ]. A)
Differentiation of this equation with respect to v gives

PO 10 v d (YO | e o
dv +|: v y(v)dv( % )]p"(v,n )

_PYm) [y v d(ym) P
T dv +[ v y(v)dv( v )]p"(v,n),

®
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which is a linear, first-order ordinary differential equation that has the well-

known solution

RO PR
XV o

PN =1 () —
wo X

, ©

ok

when the condition pM(VR'; ™) =0 is imposed. In this equation

k™ w;m") =|: YW _ v i(Y(V))}p(n)(v; n*)+dp(“)(v; n)

v y(wWdv v dv ®)
and
oo [ Tyen v d (v,
% (v) =exp _[;{[ " e dv’( 7 )]dv . E)

The specific internal energy isentrope is obtained from the pressure isentrope by
integration.

As presented, the foregoing equations solve the usual problem of moving an
isentrope so that it crosses the p=0 axis at a specific volume, VR, that is
different from the value for the n* isentrope. It does not give the specific
entropy on the new isentrope except implicitly through v¥ . To remedy this
shortcoming, we must look at the pressure equation of state, Eq. 5.89, that
follows from the complete Mie- Griineisen equation of state. This equation is to
be solved for the specific entropy value, 0™, that corresponds to zero pressure
at v =vg . We obtain the value from the equation

nl*
N A VA )
Lm(")d"“ Or [y IV I 0™ ®

Since the right member of this equation is known, one simply evaluates the
integral of the left member as a function of ™ until a value is reached that
satisfies the equation.

As before, the problem is more easily solved if y(v)/v and CY are
constants. In this case, one simply evaluates Eqs. 5.94 for n* and n"™ , obtaining
the equations

&M (v, ™) = e™W(v; 1) +0r C3, %o M| 0e (™) -1]
P (v, 1™) = pM(v;0*) 405 C} %xc [ -1] (©G)

8V (v, ™) = Br Y (M0 (™),

relating the two isentropes.
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Exercise 5.7.12. Recentered Hugoniots are needed for calculation of shocks
propagating into material that has already been compressed by a shock. The
second-shock Hugoniot is centered at the point on the principal Hugoniot corre-
sponding to the state behind this first shock. A schematic illustration of the
Hugoniot curves of interest is given in the following figure.

pH (v)

pE2Xv)

P+

1 "
v+ VR

Figure. Exercise 5.7.12. Tllustration of the relative positions of a principal Hugoniot and
a second-shock Hugoniot centered on the state (p*, v+ ) produced by a shock transition
from the reference state.

We suppose that the Hugoniot p®(v) is known. A shock transition from
p=0, v=vr to a state defined by p=p*+ on pH(v) is followed by a
second transition from the state $* to a new, more highly compressed state. To
determine this new state it is necessary to know the Hugoniot, pH2(v),
centered on the state §+.

Application of the Rankine—Hugoniot equation to transitions from the
reference state gives

eM(v) = er +1 pOE) vk -V), N
and, in particular, the transition from the reference state to the state §+ gives
gt =er +3p* (VR —V*). ®)

Similar application to the transition from $* to some state p, v on the second-
shock Hugoniot gives

e®2) () =e++%[p(H2)(v)+p+](v+ -v). ©)

Substitution of Eqgs. A, B, and C into the Mie—Griineisen equation, and solution
for p®2)(v) gives the second-shock Hugoniot
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P [1—12(%) (vr —v)] +%p+ (VR = V)

PED() = ®)

l—zszvl(v*—v)

An example of a second-shock Hugoniot is shown in the following figure.

o
S | =4
b =3
— o
copper b copper
=
o S .
= S principal
& ] Hugoniot
N e |
=
&4 principal e
Hugoniot second-shock
Hugoniot 1 Second-shock
Hugoniot
o T T T T T T e T T T T T T
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
A A

Figure: Exercise 5.7.12. Hugoniots for copper. The principal Hugoniots are centered on
the reference state pp =8930kg/m?, Or =293K and the second-shock Hugoniots are
centered on the principal Hugoniot at the point of 15% compression.

In Chap. 3 we calculated shock interactions on the premise that a second-
shock p—x Hugoniot centered on a state of moderate compression differed
little from the principal Hugoniot through this state. With the results of this
exercise we can now address the accuracy of this approximation. To do this, we
begin by calculating the p-x Hugoniots. The principal p ~x Hugoniot is
calculated in the usual way using Eq. 3.132. The second-shock p —v Hugoniot
is given by Eq. D. Substitution of the value v associated with one of these points
into the jump equation p= p*+(x—-x*)?/(v* —v) and solution for % gives a
point on the second-shock p—x Hugoniot. The principal and second-shock
Hugoniots on a graph made in this way lie so close together that they are not
easily separated on a plot of a size that can be included in this book. As an
example, the second-shock Hugoniot for copper centered on a state of 10%
compression falls below the principal p—x Hugoniot by about 3.5% when
extended to 20 % compression.

Chapter 6. Material Response I1I: Elastic Solids

Exercise 6.4.1. We have (v/vr)"? =1-1[1-(v/vr)]+--, as can be seen by
calculating the cube of each side of the equation. An expansion accurate to
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within an error proportional to [1-(v/vr)]® is obtained by adding the term
~+[1-(v/w)]* to the previous result.

Exercise 6.4.2. The expansion is

A A

E+ a—
on

1 &

o8 o
E, 0, +
&(E,m)=£(0,nr) 2 0Ey; OExr

OFEu

Ey Ext
R

(m—-nr)+
R

R

24

1 o%¢
+__
Ey(m-mr) 2 om

+l 0%g
2 0Eu Om|y

(11 nr)?2

32 34
o E]JEKLEMN +l o7¢

5 W Ey (n-nr)?

1
-+ —
6

+l o3¢
2 OEy OFkL a‘r]

Ey Exc(m—nRr) (Tl nr)® +

66

The specific internal energy in the reference state, £(0,nr), is designated sr
and the derivative 0£/8Ey; is the stress 77y, which vanishes in the reference
state. The derivative 8¢/9n is the temperature, which is designated Or in the
reference state. The second- and third-order elastic constants are defined on the
third line of Eq. 6.6. Griineisen’s tensor is defined by the equation [98, Eq.
10.40]:

_100(E, )
0 O0Ey
so we have
9%e
=—0r Yy (0,0).
OEuom|y '

We also have [98, Eq. 10.5]
0%e(E,m) _0O(E,m) _ 6
om? on CE’
For the derivative 83&(E, n)/0Ey dn? we have

OPEE M _ 1 ’Tu(En __00@yw) ="in1 _GGYU(E, L))
0Eyom* pr  On? on CE om

We shall assume that y;; is a function of E alone, so that
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03E(E,m) 0
SFoA2 T FEIV-
0F on C

Similar analyses lead to the forms given for the other two derivatives.

Exercise 6.4.3. The reason that one might prefer coefficients that involve
temperature derivatives rather than entropy derivatives is that the former are
more easily measured than the latter. The derivatives in question are

ac];KL(Ea W and dCE(T]) ]

on dn
We have
OCp (B, m) _0 Ciixe (E, 6) 08(E, 1) _ 989 Cix. (E, 6)
on o0 on CE 06
and

dCE(m) _ 0CE(E,0) 00(E,m) _ 6 OCE(E,0)
dn 86 am CE a0

Since the coefficients depend on the values of these derivatives at the reference
state their use does not introduce 0 as a variable in the equation of state.

Exercise 6.4.4. For uniaxial strain we have F=diagl| F1,1,1]. This can be
uniquely decomposed into the factors F=RU, where R is orthogonal and U is
symmetric and positive-definite. Since F is symmetric and positive-definite we
see that R is the identity transformation.

Exercise 6.4.5. The required equation is obtained by making the substitutions
indicated in the text, neglecting quadratic terms in E®, and use of the relation
R!'=R".

Exercise 6.4.6. Two stress—deformation relations that are important in analysis
of longitudinal wave propagation are the Hugoniot and the isentrope. The spe-
cific issue addressed in this exercise is the degree to which these curves differ
and, in particular, the jump in entropy that occurs across a shock.

The Rankine—Hugoniot jump condition 2.24 shows that the equation
H(—tll,V)E[[S]}‘*'%(‘tﬁ—tﬂ) [v]=0 (A)

must be satisfied along a Hugoniot curve centered on S~ ={p~, f;;,€~, Xx°}.
From the internal energy response function £ = £(F, ) we obtain
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68 o8

de= n

- dFu+5dn =% Fiyty dFy+0dn.

For uniaxial motion, this equation takes the form
= 1
d8—9dn+pR mdFn . B)

Because the Rankine—Hugoniot equation is written in terms of v it proves
convenient to consider the internal energy response to be a function of this
variable as well (Fi11=prv, En =(p3 v?-1)/2), in which case Eq. B acquires
the familiar form

de=0dn+tidv,
or,

—=H+0—. ©

Differentiating the Hugoniot of Eq. A and substituting from Eq. C we obtain

dH de 1 d(-t
O0=——=—t—(v-v") ( qchy) 1 7 =)
dv dv 2
d( fn) ®)
Gd +— (t“ t1_1)+ (V V)
Evaluating this derivative at the center point §~, we find that

i o, ®
dv s-

i.e., the rate of change of entropy with respect to specific volume along the
Hugoniot at the center point is zero.

Differentiating Eq. D, we obtain

2 2(—~
-494dn 9.___d “I+l(v_v_)_d ( t“). F)
dn dv dv? 2 dv?
Evaluation of this result at the center point and using Eq. E yields
2
<. (G)
dv? 5-

Finally, let us take still another derivative. From Eq. F we obtain

2 2 3 2(- 3(—
dedn de +edn+ld(t11) -l—(v—v~)d(t”),
dn? dv dn dv:  dvd 2 dv? 2 dv3
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which yields
4n
dv3 5-

1 d2-)
200 dv?

H)

The expanded form of the function n(v) giving the value of the entropy along
the Hugoniot is

n(V)=n(v‘)+gﬂ‘ b+ 20 [[v]P
v 5

but substitution of Eqs. E, G, and H into this expression shows that the jump in
entropy across a shock is given by

ﬂ ]]= 1 aztll

3
e~ v |, LT O

to within terms of fourth order in [v].

Let us consider expansion of the stress and temperature response functions in
a neighborhood of a point (v—, ) :

n "
i = t11(v N )+@ Av + oh la t;’ (Av)2
» | 27|
27 32
Oh | poan+ L2 fy (An)2+lﬂ (Av)?
ovon| - 2 on? | 6o |,
l & fn 1 3% 1 53;11
( Av)Y? A+~ (A2 +——| (An)’+
2 2 3
2 oviom| 20von? |- 6o |,
4))
o O 0 28
6=00", n“)+@ Av+§ A1'|+la 0 (Av)?
ov| on| _ 20v3|
s S s
20 2 3
4_9_6_ Av An.{.l_a_g ( )2 +..l_g_9. (AV)3
vom| . 2 on? 6o |
1 8% W 5% 1%
o ZA v(An)? +-—— An)® +
2 ovn| (Av)*A 6v6n2 Av(An) 5o, ( m)

where Av=v—v-, An=nm-1 and all of the derivatives are to be evaluated at
the point (v-,n7).

Along the isentrope n =1, so the terms in An=mn-n~ vanish and values
of stress and temperature are given by the equations
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I
m =0 0) =i -, - )+9’1—1 ave L Zn (e L2 iy
ov 5 2 ov? 6 ov3 5
X)
A 80 1626 18%6
0=0m =0(v-, ) +—| Av+——m0 2+_.____ AV)3 + oo,
»)=6(v-,m) o zavzs( V) P ( )

For the special process of a shock transition we know from Eq. I that n—n-
is of the order (v—v~)3, so we can write f;; and © in the forms

oh 1 62t
=t v, )=, WH_@L_] [v]+ o [[ I
o
) at L)
220 ppe ) e
and
- 20 1526
=0, N=0@-,M)+— [v|+——F
v, =00, 1) avs_[[]] o
. Lv)
l 9 3
e R A
that are accurate to third order in v—v-.
Comparison of Eqs. K and L;, yields the Hugoniot in the form
t =tW )= t(“)(v)+all [[n]] =P W) -p2 yuv- 0[]+
o ™M
=0 (v) = e(n)(v)+_ [[n]]+ .=e(1>(v)+_c_ In]+--,
E
where we have used the equations
1 828 1 om
Yn=-— = = e
0 aEnaTl §- PRV 0 61’] S-
. ™)
1_12
Ce 6 on

to express the derivatives 0f1/0v and 06/0n in terms of Griineisen's
coefficient, y11, which we shall henceforth write simply y, and Cg, the
specific heat at constant strain.
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Because the more readily available data are specific heats at constant
pressure, we note the conversion

. = (Cr)?
Cr+Bw)?B"p-0""’

(®))

where Cg and Cr are specific heats at constant strain and stress, respectively,
o= oy is the coefficient of linear thermal expansion, and B" is the isentropic
bulk modulus. When the stress and strain vanish, Cr and Cg correspond to
specific heats at constant pressure and volume. Thermodynamic relations such
as that of Eq. O are discussed by Thurston [98].

A variety of equations have been proposed for the dependence of ¥ on v.
One can, of course, assume that v is a constant. The assumption that py is
constant is also widely adopted, partly because it is a reasonable approximation
and partly because it simplifies some calculations. For the present, we shall
assume y = yr , a constant, or py =pr Yr -

Substitution of Eq. I into Eqs. M yields equations for the f1—v and 6-v
Hugoniots:

1 0t
_tl(f{)(v)=—t1(}‘)(v)+—12p1§yr |, WP +--
1 02 )
h 3
O (1) = 6™ (v) +
®) ) 12Ce Ov? S_EVI' *

For normal materials, those in which a compression shock is stable,
02h1/0v? <0, so we see that, in the —f11 —v and 8-v planes, the Hugoniot lies
above the isentrope in the direction of further compression and below the
isentrope in the direction of decompression.

The results of this section show that the entropic effects of a weak shock are
quite small. Indeed, the slope and curvature of the Hugoniot and the isentrope
are the same at the center point; the curves differ only in the third derivative.
This observation is often used to justify the use of a Hugoniot in an equation
calling for an isentrope and vice versa. It may also justify approximating a
recentered Hugoniot by the continuation of the principal Hugoniot through the
new center point. Loosely stated, one may use a purely mechanical theory (i.e.
one neglecting thermal effects) when the compression is not too great, as is
usually the case for materials deformed within the elastic range

When the initial state §~ is the reference state, expressions in terms of
derivatives such as 0ni/0v that appear in the foregoing equations can be
restated in terms of isentropic elastic constants such as those of Egs. 6.5 by use
of the relations
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h =0
oh n
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Fhnl 03 (3¢ +6C), +4Ch),
ov3 5

where the Cly.. v are elastic moduli of various orders (as defined by Brugger
[151), in Voigt notation.

Example: Results for the Linear Us — x Hugoniot. In this section we con-
sider the application of the foregoing results to a material for which the Us —x
Hugoniot has been determined to have the linear form Us =Cs +Sx discussed
in Sect. 3.4. The 11 —v Hugoniot corresponding to the foregoing relation is

= PRCBY (VR V)

= . ®R)
" -pr SR -V)]?
Using Egs. E, G, and H, we can show that
du| i
|- v .
27 2£(H)
L ©®
A Kt
832‘11 _ d3;1(1H) _ YPR dzil(lH)
o3 - A | 2 a? |

so the derivatives in Eq. K, can be calculated by differentiating Eq. R. We
obtain

1) =(prCs)*[v] [1 -prS[V]+p2S©@S -] +--- ] (T)

This expression is not very accurate, even at rather low compressions, because
the rational function of Eq. R is not well represented by the polynomial expres-
sion resulting from the expansion. Nevertheless, it is easy to see that the thermal
correction relating the Hugoniot to the isentrope is small. A more accurate result
might be obtained by simply applying the correction to Eq. R, in which case, we
obtain
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D)= erCo) v -v) 1

[1-pr S(vr —V)]? EYPi'ngS(vR_vp Foen )

Chapter 7. Material Response IV: Elastic—Plastic and
Elastic—Viscoplastic Solids

Exercise 7.4.1. For the problem at hand, t=diag . ta2, b2 )] Since the

maximum shear stress is the same on all planes inclined at a given angle to the

axis it is sufficient to consider only the plane having the normal vector

n = (cosq, sing,0) . The stress vector on this plane has components t§") =tijhi

or, t™ = (f1cosy, t22 sing, 0) and the component of this stress that is normal to
the plane is

£t = (t™ .n)n = () cos ¢, t22 sing, 0) = (f11 COSP + I sin)(cos @, sing, 0) .
The shear stress on this plane is ¢t = ¢™ — ¢(™) or
t™ = (#) — t22 )sinpcos(sing, —cos ¢, 0),
and the magnitude of this stress is
[t = (111 — t2 )singcos . A)
The maximum of this quantity occurs when d|t(|/dp =0, which occurs

when ¢ =45°. We find from Eq. A that |t®™0]  =1|(t1-12)].

Exercise 7.4.2. Elastic Range. The elastic strain is of the form
E=diag (ES,E5.E5) and, using the linear stress relation, we have
=0 +2pR)Eg + 20 ES, and t =ARES +2(0\r +1r)ES, =0. From the latter
equation, we find that EZ, =— (Ag /[2(Ar +1=)]}ES , and from this we find that
tn =[(3Ar +2pr)HR /AR +1R)IES (Note: The coefficient
(3Ar +2pR)puR /(AR +pur) is called Young’s modulus). The limit of the elastic
range occurs at m=yxY, or Ef=[(hr +pr)/[pr Grr +2pr)}xY and
E$ =—{Ar/[2pr BAr +2pr)]} 1Y . The pressure is p=-Lty =—1m and the
stress  deviator is t'=t+pl=diagltn+p, p, p|=1rn diag|2,-1.-1]. The
spherical part of the strain is 9=1Ey =1(£3+2£5) and the strain deviator is
E'°=E°-91=1(E} -E5)diag|2,~1,~1|. Using the foregoing equations we
can rewrite 8 in the form $=[pr/3(\r + un)]ffl. From these equations we
find that p=-(3Agr +2ur) 9, showing that the pressure, the spherical part of the
stress, is proportional to the spherical part of the strain. The coefficient
Ar+2pr is called the bulk modulus. The stress deviator is
t’=t+p1=—pdiag|

2,-1,-1|. We can write the stress component #; as the sum
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of pressure and shear terms: fy=-p+th =~(3hr +2pr)S+2pr Eif. The
maximum shear stress is 145> =1#u and, as suggested by the notation, occurs on
planes inclined at 45° to the axis of the rod.

Plastic Range. In the plastic range, E=E° +E?, with Ef +2EE, =0 because the
plastic part of the strain is isochoric. Since the stress satisfies the yield condition
throughout the range of plastic deformation, we have the elastic strains
ES ={0r +pr)/[MrRGAr +2pr)]} 1Y and ES, =— (Ar /[2pr Ghr +20)]} 1Y .
The plastic strain components are E} =En-E), and Ef =-L1E}. For non-
hardening materials Y is constant and E) is specified as a boundary condition.
for hardening materials Y increases as the rod is deformed and either the strain or
the stress can be specified.

Exercise 7.4.3. The vector n*) has the components

-1
n® = w/vr)BNO S S (A)
as given by Eq. 7.106. The squared magnitude of this vector is
-1 -1
ni(k)ni(k) = (V/VR)M?’Nr(k)Ngk) 8radap FS F[;s ) B)
We can write
Fg =RipUp, ©
when U is small and, as with Egs. 6.53 and 6.55,
Ush =Bop+Egy and F&® =R +Riykys. D)
We also need the equation
es des e
Fui = Uocy Ryi . (E)
From Eq. D we see that
A ~
Ugsp =8ap—Eqp )
to first order in E* | With this,
-1 -1 ~ -1
F7 =Roui—Eg Ryi . G

Substitution of Eq. G into Eq. B yields the result
-1 ~_ =l -1 ~ )
n®En® = 1vr)ANEONE 8ro 8ap (Rui— Ees Ryi )(Rpi— Egg Rsi )
=WIvR)*3NONP 8o 8ap Bup —2E ),

and the square root of this is the magnitude of n® that, to first order, is
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n® = w/vr)PNO|1-(VO)2NONE sro 80p S |. H)
The magnitude of b(®) is calculated in the same way.

Exercise 7.4.4. When restricted to uniaxial motions, Eq. 7.21 takes the form of
the two equations

OE! 1 ot 3prWP OE! 1 oty 3prWP
11 - 1 + PR ; til d 22 - 22 + PR ; t’22. (A)
ot 2pr Ot 2Y ot 2ur Ot 2Y
For WP we have
. OEP = OEP OER,
Wep=—Llg =""g +2 2.
PR ot ' ot or 2 ®

Since EP _and t' are deviator tensors we have trEP=0 and trt'=0 so
Ezpz =——E“ and 5 = ——tn Eq. B becomes

3 9ER

we = Ly —66 t C
PR =05 M= . ©

Substituting the first of Egs. C into Eq. A; gives

OE 1 ofy . 9 OEF
Ot 2ur Ot 4Y?% ot
but By = Eif +EP = Eif + E} so Eq. D becomes

(th)?, ®)

Oy 1 oty _ OEf 9 aEn,t, v
ot  2pr Ot ot 4y?

The left member of this equation vanishes because the stress relation is
H1=2ur Ej; . This leaves us with the equation

p
{ ’ (til)Z—l}ag—;%o. ®

477

By the yield condition (1) +2(t2)? =212 or (i) =9(t2)* =Y?* and we

see that Eq. E, and, therefore Eq. A, is satisfied identically. A similar calculation
leads to the same result for Eq. A,.

Exercise 7.4.5. The deformation is illustrated in the following figure. The
plastic part of the deformation gradient is

FP = diag"FLp, FF,EF ” =diag ||7»L, At, At "

where AL ?»% =1 since the plastic part of the deformation is isochoric. From the
figure we see that
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X;
X, At
1
90°— yp
90° Y
0 0
0 1 X, 0 AL Xy
Figure: Exercise 7.4.5.
tan l E_yp) =2\'—’1‘—=(KL)~3/2=(FP)_3/2. (A)
22 AL b

We also have the trigonometric identity
. yP) 1-tan(yP/2) -
tan| —— 1 |= =2 T2 o (RPy-32
(4 2) 1+ tan(y?/2) () ®)

where the second of these equations follows from Eq. A. Manipulation of this
second equation yields the required result,

1‘(FLP)3/2:I‘ ©

yP =2arctan| ~
1+(FLP)3/2

Exercise 7.4.6. Plastic Range. Consider the response just above the HEL. We
have the hardening equation 7.81 which, for compressive deformations, can be
written

Y =Yo[l+h(-yP)V"], (7.81)

where yP is given by Eq. 7.82,. When Eq. 7.81 is solved for y? we obtain the

result
1(Y "
Ly _[; (__YO _1)] | )

We also have Eq. 7.79,,
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FP2 = (v/VR)”3{1+#} . (7.79)

Differentiating Eq. 7.81 yields the result

dY Yoh L dyP
el (—y)(/mt 2
v . -r?) Ft ®

and from Eq. 7.82; we obtain

d.Yp _ 3(FLP)I/2 dFLP

= , C
dv 2[1+(F")3] dv ©
so Eq. B becomes
_‘_1_{___3Y0h l(i_ll 1-n (FLP)I/Z dFLp )
dv 2n | h\Y 1+(FP)? dv ’
and, from Eq. 7.82, we obtain
dFf 21 1 (vY)”? dy
L _foppe || (FRyV2ZI
dv 3v © 3|,LR[VR] 52 dv ©
Substitution of Eq. E into Eq. D and solution for dY /dv yields the result
Yoh 1 1(1_1j 7D
dy _ n vl h\Jo 1+(FP)3
v Yoh B l(L_lj v )
2npr [1+(FP)3 ]| h\To VR
F)

Yoh l (FIEJ)3/2
n_v 1+ ()3

TR e
h\Yy 2npR [l+(FIF)3] VR

We are interested in evaluating this equation at the HEL, where ¥ =Y, , Ff =1,
and v = v | in which case we have

dY = 2ug (vHEL -
P Ry B ©

From Eq. 7.80, we have
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d(-tn) 2dY
—= p )+ ——, H
", P 3 dv (H)
and, at the HEL this becomes
_ HEL ~1/3
e it = ) O]
v |ueL+ 3v VR

Elastic Range. In the elastic range (i.e., below the HEL) we have the stress
relation —t1 = p(v) - £1(v), where t(v) = - pr [1-(v/vr)] and, with this, we
have

d(-tu) _ aeomELy_ FUR
dV HEL_—p(V ) 3VR
HEL \-1/3 (_HEL \4/3 0
e ) )
3vHEL VR VR

Comparison of Eqs. I and J shows that the stress—volume curve is slightly
steeper immediately above the HEL than immediately below it. If we neglect the
small factor that distinguishes Eq. J from Eq, I, we see that, for the hardening
equation 7.81, the slope of the compression curve is continuous at the Hugoniot
elastic limit. It is noteworthy that these results at the HEL are independent of the
hardening parameters.

Chapter 8. Weak Elastic Waves

Exercise 8.5.1. In the absence of body force, the equation of motion 2.92; takes
the form

0 0
—_ )+ — (-t =0,
6t(pR x) 6X( 1)

and the stress is given by Eq. 6.17;, which can be written
= (7\,1; +2pE)UX

for isentropic motions. According to Eq. 2.29 we have x=U;(X, t). Substitut-
ing into the equation of motion gives

1
Ui = —(g +2p5) Uxx .
Pr

According to the definition of Eq. 8.5
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1
Cg=—(hs+2pz),
PR

and we see that we have obtained the required result.

Exercise 8.5.2. Substitution of Eqs. 8.16 into Eq. 8.13 gives

1 X-Cot 1 X+Cot
U(l)(X,t)=-2-j- [S(i)—V(i)]d§+-2-J. [SE-V(©) 14E,

0 0

where we have used Eq. 8.12 to show that the integration constants satisfy
Uary(0) +Uqry(0) =0.

In the region X-Cyt20 (with X2>0and t20), we have
0<X-Cyt<X+C,t so the integral over the interval [0, X+C,t] can be
broken into integrals over the two intervals [0,X-Cyt] and

[X~Cqt, X +Cyt]. The desired result then follows immediately.

Exercise 8.5.3. We are considering a slab of thickness X; that is undeformed
and at rest. The solutions of Sect. 8.3.1 remain valid for this new domain for
times 0<t<X;/Cp prior to that at which the wave first encounters the
boundary at X = X7.

t
X1/ Co|——————— S
‘ Interaction
T b & Co Region
/ Rest Zone
0
0 X X

Figure: Exercise 8.5.3. Lagrangian space-time diagram of a pulse of finite duration
interacting with a boundary.

The X~t diagram given above illustrates the wave field for the case in which a

traction

; poCEE(), 0<t<=z
1=
0, t>t,
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with E(0)=E(t)=0 is applied to the boundary at X =0. Focusing on the
incident wave region, we have

t—~(X/Co)
U](X,t)=—Co'[ EQ)dL, Co(t-t)<X <Cot.
0
The strain and particle velocity associated with this disturbance are given by

o _p t_ﬁj
oX Co

-?—(—]-1—= —CoE(f——/X-) .
ot Co

Because the boundary at X =X is immovable, a reflected wave must arise to
cancel the motion transmitted to the boundary by the incident wave. When the
incident wave encounters the boundary at f=X;/Co the reflection process
begins. Clearly, the reflected wave is a left-propagating wave having the prop-
erty that it exactly offsets the motion that the incident wave would produce at
X, if the material extended beyond the boundary at that point. If we imagine
the material to extend beyond X; to X =2.X, then we see that a wave of the
same temporal shape as the incident wave, but carrying a particle velocity of the
opposite sign and propagating to the left from X =2.X; would effect the can-
cellation. The reflected wave U, would therefore be such that

OUL(X, 1) _ t_2X1—X) 2X-X _, _2X-X

<
ot Co Co Co

+C0E[ +1T, A)

subject to the additional condition that ¢ cannot exceed 2 X1/Co, the time at
which the reflected disturbance first encounters the surface at X =0.

The combined incident and reflected waves gives the velocity field

SU(X, 1) X 2X-X
XD __ il t-A v Ef1-2K2X
ot 0 ( Co) 0 ( Co ) ®)

in the region where both are defined. Clearly, the particle velocity oU/ot
vanishes on X = X, thus satisfying the condition that the boundary does not
move.

The displacement field associated with the reflected wave is obtained by in-
tegrating Eq. B. We obtain

t—{(2X1-X)/Co]
UL(X,t)=CoJ- EQ)dL, 2X1-Cot X L2X,-Co(t-7).
0
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The strain and particle velocity associated with this reflected wave are given by

dUL =E(t_2X1 —XJ

ox Co
oUL, =C0E(t_2x1 —Xj.
ot 0
The stress in the interaction region is
PRI ) PR ) P St | 3.5
60X 0X Co 0

and the value at the interface, X = X1, is given by

m(X, t)=2E(t—£), X X
Co

Note that the wave reflection doubles the stress produced by the incident wave.

Exercise 8.5.4. The required procedure is the same as for the case of an unre-
strained boundary, except that the virtual wave has the same sign as the incident
wave.

Exercise 8.5.5. Let us consider the case in which a plate of thickness L that is
moving to the right impacts a stack consisting of two plates, each of thickness L.
All three plates are of the same material. The impact will result in application of
a compressive stress of amplitude 11 =—-pr Co%p/2 (where %, is the impact
velocity) and duration ¢ =2L/Cp. The figure below shows the two target plates
with the compression pulse entering at the impact interface (the projectile plate

Figure: Exercise 8.5.5.



Appendix: Solutions to the Exercises 411

is not shown). The virtual pulse is shown to the right of the diagram; it is at the
same distance from the unrestrained back face of the target as the incident pulse,
is propagating to the left, and carries stress of equal magnitude but opposite sign
to that of the applied stress, tensile in this case. The next two panels of the figure
show the pulses as they are approaching the rear surface. The stress in the target
is compressive, as shown by the heavy line. The compression pulse can propa-
gate through the interface of the two target plates without interaction. In the
fourth panel we see the two pulses in a condition of some overlap. Since the
stress in the plates is the sum of the stress carried by the actual and the virtnal
pulses, it is zero at and near the rear boundary, as required by the boundary con-
dition. The interface of the two target plates remains in compression, but the
compressed region is narrowing, In the fifth panel the pulses are shown in a po-
sition of exact overlap; the plates are unstressed. Finally, the sixth panel shows
the configuration after the pulses have passed partially through each other. The
material is shown as having gone into tension. If the interface is bonded, this
may be possible; otherwise the plates will separate. One can show that the back
target plate will be ejected from the stack with the same velocity as the projectile
plate had at impact. The motion of the other two plates will be arrested: The
projectile plate and the first target layer remain motionless and in contact. When
there are more layers in the target, the same thing happens: The back layer is
ejected but the projectile and the other target layers remain motionless.

Exercise 8.5.6. The graphical solution for the particle velocity field is obtained
in essentially the same way as for the stress field, except that the two pulses
considered have the same sign (cf. Eq. 8.53) as compared to having the opposite
sign (cf. Eq. 8.53) when the stresses were being determined. The following
figure illustrates the calculation. Note that the particle velocity in the region near
the unrestrained surface increases as a result of the reflection, and that it exceeds
the velocity of particles further inside the boundary. When the particle velocity
discontinuity reaches one of the boundaries separating the layers, the layer
nearest the surface is ejected from the stack and the configuration becomes as
illustrated in panel c of the figure. This is the same as the original configuration
shown in panel a, except that the amplitude of the pulse is reduced. The same
wave interactions will occur and another layer of material will be ejected. This
process will continue until the pulse is completely attenuated.

h
v '
.

'

Ve
T

Figure: Exercise 8.5.6.
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Exercise 8.5.7. The solution is obtained using three stress distributions. The
initial distribution is formed from two distributions, each of which is one-half
the amplitude of the original distribution. These pulses propagate in opposite
directions, one into the material and one out of it. This latter pulse is
compensated by a pulse of opposite sign that originates outside the material and
propagates into it.

Chapter 9. Nonlinear Elastic Waves

Exercise 9.7.1. Examination of Eq. 9.62 shows that the third-order stress—strain
equation becomes linear when Cy; and Cyy; stand in the relationship indicated.
As suggested in the statement of the problem, more can be said on the matter.

Exercise 9.7.2. The problem is illustrated in the following figure. When the
incident shock propagating in the high-impedance material encounters the inter-
face with the low-impedance material a shock is transmitted into this material
and a centered decompression wave is reflected back into the high-impedance
material. Since the interface is under compression, the materials will not sepa-
rate and the pressure and particle velocity fields are continuous at this interface.
The materials are different so we cannot expect the displacement gradient to be
continuous. The shock transition in the low-impedance material must satisfy the
jump conditions

¥+ Us, G =0 and preUsx™ -p** =0. A

The pressure and displacement gradient in the shock compressed material must
also satisfy the Hugoniot relation

2 ++
w _ PreCy Gp

. ®)
(1+SLGI:L’L)2
S S St
G=Gy | G=0 | G=0 p - .
=iy | #=0 | =0 Su St
p=py | P=0 | p=0 UsL
R
Usu
t<0 . _
Su Sy
+ ++ + - X
Sh S Sy S o
+ ++ ++ H
G=G4|||G=G41G=G,"| G=0 -
x=dy || £=3x | =5 *=0
p=pyl|lp=p*|p=p*| P=0
- Us.

Figure: Exercise 9.7.2,
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The centered simple decompression wave in the high-impedance material is
analyzed as in Section 9.3.1, except that the pressure behind the wave is p**,
not zero. The key quantities that must be determined are those in the region
between the shock and the simple wave. They are p**, x**, G5, G;*, and
Ust . The available equations are the jump conditions for the shock, Egs. A, the
Hugoniot relation, Eq. B, and the isentropic stress relation that, in the present
case is the same as Eq. B, except that it relates p** to G;;* using the material
properties pru and Cpy ,

Finally, we have Eq. 9.162 evaluated for the case at hand,
_ ++ _ ++
P - 2Ceu| [1-SH G,Lr —tan! 1-Su GIL
Su 1+Su GH 1+SHGH
1+ SH G}}L 1+ SH G}:Ir

The five equations, Eqs. A, B, C, and D can now be solved for the field
quantities defining the state in the region between the waves and everything else
follows.

D)

Exercise 9.7.3. The particle velocity behind the receding centered simple
decompression wave is given by Eq. 9.162 when G =0. Evaluation of this
equation for several conditions produces the results given in the following table.

Escape velocities.

Cu Pb Al alloy 2024 Be
1.489 1.46 1.338 1.124
Ce= 3940m/s 2051 m/s 5328 m/s 7998 m/s

A Xesc/CB Xesc/Ca Xeso /C Xesc /CB

o]
I

0.00 0.00 0.00 0.00 0.00
0.05 0.05 0.05 0.05 0.05
0.10 0.12 0.12 0.12 0.11
0.15 0.19 0.19 0.19 0.18
0.20 0.28 0.28 0.27 0.26
0.25 0.39 0.38 0.37 0.34

0.30 0.52 0.51 0.48 0.44
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Exercise 9.7.4. For the simple wave we have

G
X—x =- J-CL (GHdG', (A)
o
and, for the shock, we have

[x]* =[-a][-v]=vr[m]}[GI. ®)

since v =vg (1-G). Let us expand the integral in Eq. A in powers of G-G ™ ;

jiavam?=cqu<G—Gv+%cqu(G—Gv2
o
+1CL(GHG-G )P+
S0
x-% =-CL(G ) (G-G)-LCL(G) (G-G)? ©
~LCLG)(G-GT)P +y
where the primes denote differentiation with respect to G.

Now, let us expand Eq. B in the same manner. Defining

®(G) =vx [m][G],

we have
d oh - _
E@(G):vk{%(G—G )+(t“—t11)}
d? 82 - of
2 oGy =i L G-y +2 2L
el vR{am( ) 66}
d? 53&1 - 62;11
206G = G-G)+3
ez vR{acP( 356
d4 54?11 - 63;11
—®G) = G-G )+4 ,
it @ vR{aG‘*( 456
SO
®(G)=0
(G )=0
_ 6?11
"G ) =2vr 2t
@) Y oG-
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~

ey 621']]
"G =
.
W hy
(G ) =4 zr
-
and
12 a?n + - VR 62?11 . _
=vg —| (G"-G7)2+— G"'-G)3+
[ =ve = A 4 a6, ¢ ) o
31}_63?“ (Gt =G ) +-n.
6 0G3 5

To compare this result with Eq. C we need to express the derivatives of the
stress-response function in terms of the wavespeed and its derivatives. We have

oM (G, M)

2 —
CL(G)=vr o .
Gy YR &G, )
CLOCLG) =21
LG CLG)+CL©O)) = 2 LG )

2 oG? ’

which can be solved for the derivatives. When these are substituted into Eq. D
we get

[+ =CHG NG -G ) +CL(G)CLG XG* -G )?
+HaHaeH+aeHrfe -6yt +-

Taking the square root of this, with sign appropriate to a decompression shock,
we get

[#]=-CL(G NG -G)-LCLG NG  -G™)?

L oys LIGGOR | o _gys e ®
[GCL(G )+24 GG ](G G )+
Comparing Eqs. B and F,we see that

Xt —x = l[x]]shocw_l_w((;* -G )3+

simple wave 24 CL (G—)
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Exercise 9.7.5. The required result is easily derived using the expansions given
in the previous exercise.

Exercise 9.7.6. Two errors are introduced when a centered simple wave is ap-
proximated by a shock. First, the shock approximation does not capture the
spreading of the simple wave that occurs with increasing propagation distance
and, second, the decompression shock involves a non-physical decrease in
entropy, whereas the simple wave is an isentropic process. As one can see from
the figure, the spreading is more pronounced for the stronger waves and longer
propagation distances because of the increased influence of the nonlinearity of
the stress equation. An indication of the effect of the differing entropy on the
particie velocity is given in Table 3.3. As discussed in Exercise 6.4.2, the en-
tropic error is proportional to the cube of the shock strength, and thus is small
for weak shocks.

Exercise 9.7.7. In a simple wave the forward characteristics are defined by #*
alone:
X =S (-1, (A)

where S(¢*) =CL(G(#*)) . Any trajectory through a simple wave that depends
on G and/or x is a function of * alone (and the point (Xo, %) at which the
trajectory enters the wave).

Consider the £ =const. characteristic having its X-axis intercept at X = X™*.
In the region ahead of the wave it is given by

X ==CL(G ) t+X". (B)

Its intersection with the leading characteristic of the wave, X =CL(G™)(r—¢7)
is, at (Xo, fo), given by

Xo=L[x*-cL(G)r]
] _X"+CL(GHE ©
206G

Within the wave region this characteristic can be described parametrically by
equations of the form

X=X, t=t1%). ®
The cross characteristic is defined by
dXxX
~7 =~ CL@GE) =-S5). (E)

Using Eq. D, we can write Eq. E in the form
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ax .
ar - -S(t )dt* F)

At any point in the wave the variables X, ¢, and * stand in the relation given
by Eq. A, so

AX _ repey(ppr w| dr _
=S -1+ S( )[dt* 1], (G)

where S'=dS/dr*.
Using Eq. G allows us to write Eq. F in the form

AL o=y, )
where
. N Sl(t*) N =l Sl(t*)t*
(! )t—2S(t*)’ y{t") 2[ 50 +1}. O

this is a linear, first-order ordinary differential equation and has the solution

1/2
S@) NIN(G)
()[ j t(———_— \/S(SdS,
S(r) N () 2 S(t
where the constant of integration has been chosen so that ¢ =¢, when * =¢—.

The function X =X (r*) is obtained by substituting Eq. J into Eq. F and
integrating. The result is

wN1/2
X()=Xo +S(t‘)[[s(—t_)J -1 } (to—17)

N

t t
- J‘S(S) d8+%,/S(t*) j' ,/S(S) ds.
IS s

The parametric equations J and K for the characteristics can be simplified
when a specific choice of Cp (G) is made, but the characteristics are completely

determined only when one specifies both the wavespeed and the boundary
condition G(#*).

Exerclse 9.7.8. From Eqs. 9.10 and 9.17 we have C? = - (1/p%)dp™ /dv and
¢l =dp™/dp=-(1/p?)dp™/dv. Equating the two expressions for

dp™ /dv that follow from these equations and taking the square root yields the
desired result.
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Exercise 9.7.9. The issue turns on demonstrating that

G p ,
J. CL(GYdG =~ I £Ep(T")—arp'. (A)

0 PR

We have equations G =(pr /p)~1 so G=0=>p=pr, dG=—(pr/p?)dp,
and CL =(p/pr)cL, and we see that the right member of Eq. A is the same as
the left member.

Exercise 9.7.10. From Eqs. 2.40 and 249 we have p=pr(l-ux) so
Px =—pPR Uxx and p;=-prux. From Eq. 2.48 we have x=(pr/p)u: so
Xe=—(pr/p*)peus +(Pr/p)ue and  Fx=—(pr/p*)pxtte +(PR/P)tite.
Substitution of these results into Eq. 9.14, shows that it is identically satisfied in
linear approximation. Substitution into Eq. 9.14, and neglect of nonlinear terms
yields the result uy = c2 (PR ) e .

Chapter 10. Elastic—Plastic and Elastic—Viscoplastic Waves

Exercise 10.4.1. The solution is obtained by application of the jump condition
of Eq. 2.113, to the advancing plastic wave in the target plate and the receding
wave in the projectile plate. The jump condition for the plastic shock in the
target is —tn =ty —pren Can (X~ %55") and, in the projectile, we have

-t =t —pr@ Coey (X - x5y~ . Since the longitudinal stress component and

particle velocity in each material are the same at the impact interface, the stress

given by these two equations can be equated and the resulting equation solved
for x, the result is

_Pr®) (Co) + Ce) gy —pre) (Cocry — Cam) %iny -

x+

B

Pr® Ca) +Pr1) C(1)
where we have wused the equations tl}IIEETL) = pr(1) Co(T) J'c(}T]fL and
ticey = Pre) Co %y~ . With this result in hand, we can return to either of the
jump equations to calculate £’ .

Exercise 10.4.2. The X-¢ and -#, ~x diagrams for this problem are shown
below. These diagrams, although shown in full in the figure, must be construc-
ted in steps as the interpretation of the experiment evolves.

The first jump in the recorded x history occurs when the precursor shock ar-
rives at the sample/window interface. The transit time of this shock through the
5-mm thick sample is 0.785 ps, so we find that Cocay = 6369 m/s. Since, for
this shock, the jump condition is —f1 = preany Coan ¥ we know the slope of this
part of the sample Hugoniot although we do not yet know the HEL. Because the
shock impedance of the sapphire ( Z = 0.04 GPa/(m/s) ) is greater than the elastic
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1 2 >
o 4
o &)
= = 2
14 3
/ sapphire 1
# plate window
0 5 X, mm 0 50 . 100
x,m/s

Figure: Exercise 10.4.2.

shock impedance of the aluminum alloy (Z =0.02 GPa/(m/s)) the reflected
wave creating region 3 of the X plane is one of compression and, therefore, a
plastic wave propagating at a speed Cp that is yet to be determined. In the
theory of weak elastic—plastic waves that we are using the Lagrangian plastic
wavespeed is the same for all of the waves, so the transit time of a plastic wave
across the target plate corresponds to the time of the second jump in the inter-
face-velocity history and the plastic wavespeed is, therefore, Cr =5192m/s.
With this information we can determine the HEL for the sample material. The
particle velocity in state 3, ¥® =17.89m/s, is known from the interferometer
measurement and the corresponding stress is known from the sapphire
Hugoniot. We have —# = pres)Cr)¥® =0.798GPa. We can now use the
jump equations for the transition from state 1 to state 3 and the transition from
state 0 to state 1 in the aluminum alloy to determine its HEL. When these
equations are solved we obtain the values EL=0.578GPa and
xHEL =33.63m/s. Since the HEL and Cg are now known, we can plot the
plastic part of the aluminum alloy Hugoniot. State 2 falls on this Hugoniot at the
particle velocity ¥ =100m/s corresponding to one-half of the projectile veloc-
ity. The corresponding stress is found from the jump condition to be
~t? =1.51GPa. From the jump conditions we find that —¢’ =2.21GPa and
xOL =49.64m/s.

Because sapphire monocrystals are elastic to approximately 15 GPa, experi-
ments of the sort just considered are often conducted at much higher impact
velocities to study curvature of the plastic part of the Hugoniot. In this case,
interpretation of the measurements is less direct. It is necessary to conduct
experiments at various impact velocities to infer the dependence of Cp on the
particle velocity by iterative interpretation of the results.

Exercise 10.4.3. The X—f and -, ~x diagrams for this problem arc shown
below. These diagrams, although shown in full in the figures, must be con-
structed in steps as the interpretation of the experiment evolves.
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The things that we know about the experiment are i) the Hugoniot for the
quartz: —t;; =pr Co %, where pr =2650kg/m? and Co=5721m/s, ii) the stress
amplitude and arrival times of the three shocks recorded at the interface of the
sample and the gauge, iii) the thickness and density of the sample material,
Xt =5mm and pr =7870kg/m? and, iv) the projectile velocity, xp =136 m/s.
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s
- s K
0.0+ — :
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Figure: Exercise 10.4.3. The X-¢ diagram. The illustration at the right is an enlarged
version of the important part of the full diagram.
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Figure: Exercise 10.4.3. 11 —x diagram

To interpret the experimental results we construct the X-¢ and #; —x dia-
grams incrementally as we identify the various states produced. If the gauge
record revealed only a single step, we would expect that the impact stress was
below the HEL and that only an elastic wave was produced. Since the gauge
record exhibits several steps, we may assume that an elastic—plastic waveform
propagated through the sample and that transmitted and reflected waves resulted
from its interaction with the gauge. From the gauge record we see that the transit
time of the precursor shock through the 5-mm thick sample was 0.84 ps, so the
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elastic wavespeed in the sample material is Co = 5952 m/s . This permits us to
plot the precursor trajectory on the X-f plot. The quartz Hugoniot and the slope
of the elastic part of the sample Hugoniot can be plotted on the #; —x diagram
using the values of pr and Cp for the two materials. We also know the stress
produced at the sample/quartz interface when the precursor arrives, which defines
state 3 on the #; —x plot. The Hugoniot elastic limit, state 1, can now be
determined as the intersection of the reflected elastic Hugoniot through point 3
with the elastic Hugoniot for the right-propagating precursor shock. When the
reflected precursor wave encounters the advancing plastic shock another inter-
action occurs, and elastic (and possibly also plastic) shocks propagate in both
directions. The right-propagating elastic shock encounters the sample/quartz
interface at the time of the second step in the recorded waveform, £=1.05 us after
the projectile impact. The elastic waves incident on, and reflected from, the
plastic shock define region 3 on the X—f plot and their intersection lies on the
plastic shock trajectory in this plane. Since the origin of the graph also lies on
this trajectory, the trajectory can now be plotted. As we consider this X—¢ plot
and the quartz gauge record, we see that the step in interfacial stress at 1.08 ps
after the projectile impact must arise from a plastic shock formed when the
elastic precursor encountered the plastic shock. The transition from state 3 to the
(still undetermined) state 5 involves an ¢lastic transition to the HEL stress (state
4), followed by a plastic transition to the final state 5. The wedge-shaped space
between the reflected elastic and plastic shocks is designated region 4 on the
X-1t plot. State 6 arises as the result of an elastic decompression shock from
state 4. Analysis of the transition from region 2 to region 5 and from region 4 to
region 5 identifies States 4 and 5 on the #; —x plot and shows that region 5
comprises two sub-regions scparated by a contact surface. Continuation of the
analysis defines states 7 and 8, and interpretation of the experiment is complete.

Comparison of this experiment with the one discussed in the previous exer-
cise shows that interpretation of the result is much easier when the material
downstream from the sample is such that the reflected wave is one of compres-
sion rather than decompression.

Exercise 10.4.4. Since the elastic—plastic stress relation is independent of the
rate at which the deformation occurs, waveforms can be calculated in the same
way as was done for nonlinearly elastic materials, except that the several parts of
the stress relation must be considered separately. Our first task is determination
of the stress—strain path that is followed as the pulse passes a material point.
This path is shown in Fig. 7.1 and in Fig. 10.1, which is a schematic illustration
drawn to emphasize the nonlinearities of the path.

Stress—-Strain Path

Elastic Compression. Tn the elastic range (~ ) < £/~ ) we shall use the theory
of Sect. 6.3.2, which gives the stress relation in the form #; =#,~p where
f1 =2ur E} with E} = —%[l—(V/VR)] and
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(pr CB)2 (VR —V)

W)= . A)
T T
Combining these equations, we have
2 —
—th = (Pr Cp)" (R =V) + 4uz (1——‘)-) . ®B)
[1-prSOR-W]* 3 L W

When evaluated at the HEL this is a cubic equation that can be solved for
vHEL when £2=" has been measured.

In solving this Exercise we shall use the stress relation of Eq. 6.61
—tn=p(¥) - $pM[1-(/w)].

Elastic-Plastic Compression. The stress on the elastic—plastic compression
curve is given by the equation

~tn = p )+ 11, ©

where pressure is calculated using Eq. A and where ¥;is the given constant
value of the yield stress.

The plastic part of the deformation gradient in the material at states on this
curve is given by Eq. 7.84:

1/3 e (H)
FP)e = L) I _t_p_g]
(F) (VR [ + mo) D)

In evaluating this equation it is important that the value of the shear modulus
used be appropriate to the compressed state of the material when the
compression is large. Equation 6.62 has been used to represent the function
Bv).

Elastic decompression. The elastic decompression process begins with the
material at a given specific volume v*, and the associated values of the stress
1,7, and the plastic deformation gradient F;P*. The elastic decompression path
is given by Eq. 7.78 with F® held constant at the value FP*. This process
terminates and reverse yielding begins at the value v** given as the solution of
the equation —tn (v**) = p(v**)-2Jo.

Elastic—Plastic Decompression. For the non-hardening material under
discussion the elastic—plastic decompression path begins at the stress —f11 (v*™*)
and specific volume v** . It is given by the equation —#,(v)=p(v)—~ —23—Y0 and
terminates at zero stress. The pressure is calculated using Eq. A and Yy is the
given constant value of the yield stress. The specific volume at the zero-stress
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point on this path is obtained as the solution of the equation p(v) = %Yo. We
shall need the soundspeed at points on this curve, which is given by the equation

2oy dCMO) 2 dpOY) _ 2 L+prSOR =)

dv R ay Bll-pr SO -V’ ©)

Waveform Calculation

Precursor Shock. When the impact occurs a shock is introduced into the
halfspace that is immediately split into an elastic precursor shock that is
followed by a plastic shock transition to the state imposed on the boundary.

Applying the jump equations to the precursor shock, we obtain the equation
Co = vr [ /(vg —vHEL)]V/2 ®
for the precursor-shock velocity and the equation

il ©)

for the particle velocity amplitude of the precursor shock.

Elastic—Plastic Shock. For a normal non-hardening elastic—plastic solid the
precursor shock will be followed by a plastic shock propagating at the
Lagrangian velocity given by the equation

4+ - (HEL /2
Up =vg| ——1L—1 . H)
VHEL _ ¥

The particle velocity of the material behind this shock is x* = xp/2, where the
projectile velocity xp is given. The jump equation relating stress and particle
velocity is

prUL (" —¥H) = — 1] - | @

Equations C, H, and I (with p(v+) given by Eq. A) comprise three equations
that can be solved for the three quantities Ur, #5, and v*, completing the
characterization of the plastic shock.

Elastic Decompression. An elastic decompression wave governed by the stress
relation

—tu(v) = p)—4pM[1-(v/vr) 2 (FF)?] Q)

will take the form of a centered simple wave because the stress—volume path is
concave upward. However, the curvature is slight and the stress range is
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relatively small so we shall approximate it as a decompression shock. The stress
amplitude of this shock is —#;" +#,; and its Lagrangian velocity is

et V2
C=vwr [—}‘—:‘L‘—J . (XK)

Vv —v

Elastic—-Plastic Decompression Wave. The elastic—plastic decompression wave
is a centered simple decompression wave calculated using the stress—volume
path

-t =p(v)—-§-Yo, @)

where , as before, the pressure is given by Eq. A. The waveform is calculated as
was done for an elastic material in Sect. 9.3.

Example Waveform. Results calculated for the problem given include the
amplitude and propagation velocities of the several shocks and the shape of the
centered simple elastic—plastic decompression wave. The X — ¢ plot and a tempo-
ral waveform are illustrated in the following figure.

r

4 6

t,us

Figure: Exercise 10.4.4. The X—t plot and temporal waveform for the position X=20 mm.
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